Luca Scorrano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6470670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature, 2008, 456, 605-610.	13.7	2,013
4	During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature Cell Biology, 2011, 13, 589-598.	4.6	1,421
5	OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion. Cell, 2006, 126, 177-189.	13.5	1,403
6	BAX and BAK Regulation of Endoplasmic Reticulum Ca2+: A Control Point for Apoptosis. Science, 2003, 300, 135-139.	6.0	1,322
7	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	3.5	1,230
8	OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15927-15932.	3.3	1,053
9	Organelle isolation: functional mitochondria from mouse liver, muscle and cultured filroblasts. Nature Protocols, 2007, 2, 287-295.	5.5	1,021
10	A Distinct Pathway Remodels Mitochondrial Cristae and Mobilizes Cytochrome c during Apoptosis. Developmental Cell, 2002, 2, 55-67.	3.1	963
11	Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency. Cell, 2013, 155, 160-171.	13.5	955
12	Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proceedings of the United States of America, 2008, 105, 15803-15808.	3.3	938
13	Cardioprotection and lifespan extension by the natural polyamine spermidine. Nature Medicine, 2016, 22, 1428-1438.	15.2	801
14	The cell biology of mitochondrial membrane dynamics. Nature Reviews Molecular Cell Biology, 2020, 21, 204-224.	16.1	726
15	Mitochondria and cell death. Mechanistic aspects and methodological issues. FEBS Journal, 1999, 264, 687-701.	0.2	650
16	Mitochondrial Rhomboid PARL Regulates Cytochrome c Release during Apoptosis via OPA1-Dependent Cristae Remodeling. Cell, 2006, 126, 163-175.	13.5	648
17	Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochemical and Biophysical Research Communications, 2003, 304, 437-444.	1.0	641
18	BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature, 2003, 424, 952-956.	13.7	630

#	Article	IF	CITATIONS
19	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	3.5	615
20	Mitochondrial Cristae: Where Beauty Meets Functionality. Trends in Biochemical Sciences, 2016, 41, 261-273.	3.7	605
21	Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death and Differentiation, 2009, 16, 1093-1107.	5.0	599
22	Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annual Review of Physiology, 2016, 78, 505-531.	5.6	554
23	Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO Journal, 2010, 29, 1774-1785.	3.5	494
24	Coming together to define membrane contactÂsites. Nature Communications, 2019, 10, 1287.	5.8	435
25	The Mitochondrial Permeability Transition, Release of Cytochrome c and Cell Death. Journal of Biological Chemistry, 2001, 276, 12030-12034.	1.6	422
26	Mitofusins, from Mitochondria to Metabolism. Molecular Cell, 2016, 61, 683-694.	4.5	409
27	Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 105-110.	3.3	399
28	Mitochondrial Fission and Fusion Factors Reciprocally Orchestrate Mitophagic Culling in Mouse Hearts and Cultured Fibroblasts. Cell Metabolism, 2015, 21, 273-286.	7.2	398
29	Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum–mitochondria tether. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11249-11254.	3.3	395
30	Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence. Cell Metabolism, 2017, 25, 1374-1389.e6.	7.2	388
31	Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Molecular Medicine, 2009, 1, 99-111.	3.3	360
32	The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, and Ischemic Tissue Damage. Cell Metabolism, 2015, 21, 834-844.	7.2	350
33	Mitochondria: from cell death executioners to regulators of cell differentiation. Trends in Cell Biology, 2014, 24, 761-770.	3.6	343
34	Mitochondrial Fusion Directs Cardiomyocyte Differentiation via Calcineurin and Notch Signaling. Science, 2013, 342, 734-737.	6.0	310
35	Superoxide-mediated activation of uncoupling protein 2 causes pancreatic Î ² cell dysfunction. Journal of Clinical Investigation, 2003, 112, 1831-1842.	3.9	300
36	Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. Journal of Experimental Medicine, 2006, 203, 2879-2886.	4.2	296

#	Article	IF	CITATIONS
37	DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nature Communications, 2019, 10, 2576.	5.8	274
38	An intimate liaison: spatial organization of the endoplasmic reticulum–mitochondria relationship. EMBO Journal, 2010, 29, 2715-2723.	3.5	273
39	Arachidonic Acid Causes Cell Death through the Mitochondrial Permeability Transition. Journal of Biological Chemistry, 2001, 276, 12035-12040.	1.6	271
40	Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Reports, 2010, 11, 678-684.	2.0	262
41	Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO Journal, 2004, 23, 1207-1216.	3.5	255
42	The relationship between mitochondrial shape and function and the cytoskeleton. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 692-699.	0.5	251
43	Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli. EMBO Molecular Medicine, 2010, 2, 490-503.	3.3	240
44	A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell, 2002, 2, 29-42.	7.7	225
45	Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericinâ€mediated photodynamic therapy. FASEB Journal, 2006, 20, 756-758.	0.2	217
46	High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 860-866.	0.5	213
47	Mitochondrial morphology in mitophagy and macroautophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 205-212.	1.9	213
48	Opa1 Overexpression Ameliorates the Phenotype of Two Mitochondrial Disease Mouse Models. Cell Metabolism, 2015, 21, 845-854.	7.2	202
49	Extracellular Regulated Kinase Phosphorylates Mitofusin 1 to Control Mitochondrial Morphology and Apoptosis. Molecular Cell, 2015, 58, 244-254.	4.5	175
50	SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition. Cell Death and Differentiation, 2018, 25, 1131-1145.	5.0	174
51	Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-κB and NFAT. Nature Immunology, 2001, 2, 403-409.	7.0	170
52	The mitochondrial permeability transition. BioFactors, 1998, 8, 273-281.	2.6	167
53	On the Voltage Dependence of the Mitochondrial Permeability Transition Pore. Journal of Biological Chemistry, 1997, 272, 12295-12299.	1.6	165
54	LETM1, deleted in Wolf Hirschhorn syndrome is required for normal mitochondrial morphology and cellular viability. Human Molecular Genetics, 2007, 17, 201-214.	1.4	163

#	Article	IF	CITATIONS
55	At the right distance: ER-mitochondria juxtaposition in cell life and death. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2184-2194.	1.9	158
56	Arachidonic Acid Released by Phospholipase A2 Activation Triggers Ca2+-dependent Apoptosis through the Mitochondrial Pathway. Journal of Biological Chemistry, 2004, 279, 25219-25225.	1.6	151
57	Mitochondrial Dynamics Protein Drp1 Is Overexpressed in Oncocytic Thyroid Tumors and Regulates Cancer Cell Migration. PLoS ONE, 2015, 10, e0122308.	1.1	151
58	Commitment to Apoptosis by GD3 Ganglioside Depends on Opening of the Mitochondrial Permeability Transition Pore. Journal of Biological Chemistry, 1999, 274, 22581-22585.	1.6	150
59	A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c. EMBO Journal, 2001, 20, 661-671.	3.5	143
60	Shaping the role of mitochondria in the pathogenesis of Huntington's disease. EMBO Journal, 2012, 31, 1853-1864.	3.5	140
61	Mitofusin 2: A Mitochondria-Shaping Protein with Signaling Roles Beyond Fusion. Antioxidants and Redox Signaling, 2008, 10, 621-634.	2.5	136
62	Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Scientific Reports, 2016, 6, 27351.	1.6	131
63	(De)constructing Mitochondria: What For?. Physiology, 2006, 21, 233-241.	1.6	129
64	Optic Atrophy 1 Is Epistatic to the Core MICOS Component MIC60 in Mitochondrial Cristae Shape Control. Cell Reports, 2016, 17, 3024-3034.	2.9	127
65	The many shapes of mitochondrial death. Oncogene, 2006, 25, 4717-4724.	2.6	125
66	The Mitochondrial Fission Protein hFis1 Requires the Endoplasmic Reticulum Gateway to Induce Apoptosis. Molecular Biology of the Cell, 2006, 17, 4593-4605.	0.9	124
67	Mitofusin-2 regulates mitochondrial and endoplasmic reticulum morphology and tethering: The role of Ras. Mitochondrion, 2009, 9, 222-226.	1.6	124
68	A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis. Cell Death and Differentiation, 2007, 14, 1275-1284.	5.0	121
69	Neutrophil extracellular trap formation requires OPA1-dependent glycolytic ATP production. Nature Communications, 2018, 9, 2958.	5.8	121
70	The changing shape of mitochondrial apoptosis. Trends in Endocrinology and Metabolism, 2009, 20, 287-294.	3.1	116
71	Trichoplein/mitostatin regulates endoplasmic reticulum–mitochondria juxtaposition. EMBO Reports, 2010, 11, 854-860	2.0	114
72	Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family members. Biochemical Pharmacology, 2003, 66, 1335-1340.	2.0	111

#	Article	IF	CITATIONS
73	The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function. Nature Communications, 2018, 9, 3399.	5.8	111
74	Nitric oxide inhibition of Drp1-mediated mitochondrial fission is critical for myogenic differentiation. Cell Death and Differentiation, 2010, 17, 1684-1696.	5.0	106
75	Granzyme B can cause mitochondrial depolarization and cell death in the absence of BID, BAX, and BAK. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14985-14990.	3.3	104
76	Chloromethyltetramethylrosamine (Mitotracker OrangeTM) Induces the Mitochondrial Permeability Transition and Inhibits Respiratory Complex I. Journal of Biological Chemistry, 1999, 274, 24657-24663.	1.6	102
77	Developmental and Tumor Angiogenesis Requires the Mitochondria-Shaping Protein Opa1. Cell Metabolism, 2020, 31, 987-1003.e8.	7.2	101
78	Cell death induced by granzyme C. Blood, 2003, 101, 3093-3101.	0.6	99
79	Inhibition of Drp1-dependent mitochondrial fragmentation and apoptosis by a polypeptide antagonist of calcineurin. Cell Death and Differentiation, 2010, 17, 1785-1794.	5.0	98
80	Dietary spermidine improves cognitive function. Cell Reports, 2021, 35, 108985.	2.9	98
81	OPA1 promotes pH flashes that spread between contiguous mitochondria without matrix protein exchange. EMBO Journal, 2013, 32, 1927-1940.	3.5	95
82	Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons. Cell Death and Differentiation, 2016, 23, 18-28.	5.0	94
83	Mitofusin 2 Regulates STIM1 Migration from the Ca2+ Store to the Plasma Membrane in Cells with Depolarized Mitochondria. Journal of Biological Chemistry, 2011, 286, 12189-12201.	1.6	92
84	A novel deletion in the GTPase domain of OPA1 causes defects in mitochondrial morphology and distribution, but not in function. Human Molecular Genetics, 2008, 17, 3291-3302.	1.4	91
85	Mitochondria Restrict Growth of the Intracellular Parasite Toxoplasma gondii by Limiting Its Uptake of Fatty Acids. Cell Metabolism, 2018, 27, 886-897.e4.	7.2	86
86	Keeping mitochondria in shape: a matter of life and death. European Journal of Clinical Investigation, 2013, 43, 886-893.	1.7	84
87	Defective Mitochondrial tRNA Taurine Modification Activates Global Proteostress and Leads to Mitochondrial Disease. Cell Reports, 2018, 22, 482-496.	2.9	84
88	Opening the doors to cytochrome c: Changes in mitochondrial shape and apoptosis. International Journal of Biochemistry and Cell Biology, 2009, 41, 1875-1883.	1.2	82
89	Endosome–mitochondria juxtaposition during apoptosis induced by H. pylori VacA. Cell Death and Differentiation, 2010, 17, 1707-1716.	5.0	80
90	Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency. Cell Death and Differentiation, 2013, 20, 77-85.	5.0	78

#	Article	IF	CITATIONS
91	Loss of Prohibitin Induces Mitochondrial Damages Altering β-Cell Function and Survival and Is Responsible for Gradual Diabetes Development. Diabetes, 2013, 62, 3488-3499.	0.3	76
92	Akt protects the heart against ischaemia-reperfusion injury by modulating mitochondrial morphology. Thrombosis and Haemostasis, 2015, 113, 513-521.	1.8	76
93	Mitochondria-rough-ER contacts in the liver regulate systemic lipid homeostasis. Cell Reports, 2021, 34, 108873.	2.9	76
94	Silencing of the Charcot–Marie–Tooth disease-associated gene GDAP1 induces abnormal mitochondrial distribution and affects Ca2+ homeostasis by reducing store-operated Ca2+ entry. Neurobiology of Disease, 2013, 55, 140-151.	2.1	75
95	Optic Atrophy 1-Dependent Mitochondrial Remodeling Controls Steroidogenesis in Trophoblasts. Current Biology, 2012, 22, 1228-1234.	1.8	74
96	Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission. Cell Death and Disease, 2017, 8, e3063-e3063.	2.7	74
97	Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 169-176.	1.9	73
98	Mitochondrial elongation during autophagy. Autophagy, 2011, 7, 1251-1253.	4.3	72
99	Neuronal Mitochondrial Dysfunction Activates the Integrated Stress Response to Induce Fibroblast Growth Factor 21. Cell Reports, 2018, 24, 1407-1414.	2.9	72
100	Two Close, Too Close. Circulation Research, 2010, 107, 689-699.	2.0	69
101	Inhibition of the Fission Machinery Mitigates OPA1 Impairment in Adult Skeletal Muscles. Cells, 2019, 8, 597.	1.8	65
102	Early effects of the antineoplastic agent salinomycin on mitochondrial function. Cell Death and Disease, 2015, 6, e1930-e1930.	2.7	64
103	Single cell analysis reveals the involvement of the long non-coding RNA Pvt1 in the modulation of muscle atrophy and mitochondrial network. Nucleic Acids Research, 2019, 47, 1653-1670.	6.5	63
104	The Pathophysiology of LETM1. Journal of General Physiology, 2012, 139, 445-454.	0.9	61
105	Reduction of endoplasmic reticulum stress attenuates the defects caused by <i>Drosophila</i> mitofusin depletion. Journal of Cell Biology, 2014, 204, 303-312.	2.3	60
106	DRP1-dependent apoptotic mitochondrial fission occurs independently of BAX, BAK and APAF1 to amplify cell death by BID and oxidative stress. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1267-1276.	0.5	60
107	Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biology, 2018, 19, 37.	3.8	60
108	A cross-sectional and prospective cohort study of the role of schools in the SARS-CoV-2 second wave in Italy. Lancet Regional Health - Europe, The, 2021, 5, 100092.	3.0	59

#	Article	IF	CITATIONS
109	Mice Deficient in the Respiratory Chain Gene Cox6a2 Are Protected against High-Fat Diet-Induced Obesity and Insulin Resistance. PLoS ONE, 2013, 8, e56719.	1.1	58
110	Two modes of activation of the permeability transition pore: The role of mitochondrial cyclophilin. Molecular and Cellular Biochemistry, 1997, 174, 181-184.	1.4	57
111	Early resistance to cell death and to onset of the mitochondrial permeability transition during hepatocarcinogenesis with 2-acetylaminofluorene. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10014-10019.	3.3	57
112	Essential amino acids and glutamine regulate induction of mitochondrial elongation during autophagy. Cell Cycle, 2011, 10, 2635-2639.	1.3	56
113	Impaired Mitochondrial ATP Production Downregulates Wnt Signaling via ER Stress Induction. Cell Reports, 2019, 28, 1949-1960.e6.	2.9	56
114	Transcriptomic Analysis of Single Isolated Myofibers Identifies miR-27a-3p and miR-142-3p as Regulators of Metabolism in Skeletal Muscle. Cell Reports, 2019, 26, 3784-3797.e8.	2.9	55
115	Mitochondrial Dynamics in Cancer and Neurodegenerative and Neuroinflammatory Diseases. International Journal of Cell Biology, 2012, 2012, 1-13.	1.0	54
116	The Interplay between BCL-2 Family Proteins and Mitochondrial Morphology in the Regulation of Apoptosis. Advances in Experimental Medicine and Biology, 2010, 687, 97-114.	0.8	54
117	Mitochondria Are Direct Targets of the Lipoxygenase Inhibitor MK886. Journal of Biological Chemistry, 2002, 277, 31789-31795.	1.6	53
118	Hyperactivation of Nrf2 increases stress tolerance at the cost of aging acceleration due to metabolic deregulation. Aging Cell, 2019, 18, e12845.	3.0	53
119	Less than perfect divorces: dysregulated mitochondrial fission and neurodegeneration. Acta Neuropathologica, 2012, 123, 189-203.	3.9	50
120	Resistance of Dynamin-related Protein 1 Oligomers to Disassembly Impairs Mitophagy, Resulting in Myocardial Inflammation and Heart Failure. Journal of Biological Chemistry, 2015, 290, 25907-25919.	1.6	50
121	Inhibition of autophagy curtails visual loss in a model of autosomal dominant optic atrophy. Nature Communications, 2020, 11, 4029.	5.8	50
122	Respiratory dysfunction by AFG3L2 deficiency causes decreased mitochondrial calcium uptake via organellar network fragmentation. Human Molecular Genetics, 2012, 21, 3858-3870.	1.4	49
123	Traveling Bax and Forth from Mitochondria to Control Apoptosis. Cell, 2011, 145, 15-17.	13.5	47
124	The energy disruptor metformin targets mitochondrial integrity via modification of calcium flux in cancer cells. Scientific Reports, 2017, 7, 5040.	1.6	47
125	MITOSTATIN, a putative tumor suppressor on chromosome 12q24.1, is downregulated in human bladder and breast cancer. Oncogene, 2009, 28, 257-269.	2.6	43
126	The mitochondrial protein Opa1 promotes adipocyte browning that is dependent on urea cycle metabolites. Nature Metabolism, 2021, 3, 1633-1647.	5.1	42

#	Article	IF	CITATIONS
127	Apaf1 plays a pro-survival role by regulating centrosome morphology and function. Journal of Cell Science, 2011, 124, 3450-3463.	1.2	41
128	Proteins That Fuse and Fragment Mitochondria in Apoptosis: Con-Fissing a Deadly Con-Fusion?. Journal of Bioenergetics and Biomembranes, 2005, 37, 165-170.	1.0	36
129	Perspectives on the mitochondrial permeability transition. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 200-206.	0.5	34
130	Opa1 relies on cristae preservation and ATP synthase to curtail reactive oxygen species accumulation in mitochondria. Redox Biology, 2021, 41, 101944.	3.9	34
131	Reactive oxygen species are NOXious for neurons. Nature Neuroscience, 2009, 12, 819-820.	7.1	33
132	Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy. Autophagy, 2019, 15, 1757-1773.	4.3	29
133	The endogenous caspase-8 inhibitor c-FLIPL regulates ER morphology and crosstalk with mitochondria. Cell Death and Differentiation, 2015, 22, 1131-1143.	5.0	28
134	Macroautophagy inhibition maintains fragmented mitochondria to foster T cell receptorâ€dependent apoptosis. EMBO Journal, 2016, 35, 1793-1809.	3.5	27
135	Divide et impera: Ca2+ signals, mitochondrial fission and sensitization to apoptosis. Cell Death and Differentiation, 2003, 10, 1287-1289.	5.0	26
136	Multiple Functions of Mitochondriaâ€ S haping Proteins. Novartis Foundation Symposium, 2007, 287, 47-59.	1.2	26
137	Targeting Cell Death. Clinical Pharmacology and Therapeutics, 2007, 82, 370-373.	2.3	25
138	The antiapoptotic OPA1/Parl couple participates in mitochondrial adaptation to heat shock. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1886-1893.	0.5	25
139	Changing perspective on oncometabolites: from metabolic signature of cancer to tumorigenic and immunosuppressive agents. Oncotarget, 2016, 7, 46692-46706.	0.8	25
140	Measuring Mitochondrial Shape Changes and Their Consequences on Mitochondrial Involvement During Apoptosis. Methods in Molecular Biology, 2007, 372, 405-420.	0.4	23
141	Close encounter: mitochondria, endoplasmic reticulum and Alzheimer's disease. EMBO Journal, 2012, 31, 4095-4097.	3.5	22
142	Inhibition of the deubiquitinase USP8 corrects a Drosophila PINK1 model of mitochondria dysfunction. Life Science Alliance, 2019, 2, e201900392.	1.3	22
143	Reply to Filadi et al.: Does Mitofusin 2 tether or separate endoplasmic reticulum and mitochondria?. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2268-E2269.	3.3	21
144	Inhibition of the mitochondrial protein Opa1 curtails breast cancer growth. Journal of Experimental and Clinical Cancer Research, 2022, 41, 95.	3.5	21

#	Article	IF	CITATIONS
145	Poly(adenosine diphosphate-ribose) polymerase as therapeutic target: lessons learned from its inhibitors. Oncotarget, 2017, 8, 50221-50239.	0.8	20
146	Cisplatin resistance can be curtailed by blunting Bnip3-mediated mitochondrial autophagy. Cell Death and Disease, 2022, 13, 398.	2.7	20
147	Caspase-8 goes cardiolipin: a new platform to provide mitochondria with microdomains of apoptotic signals?. Journal of Cell Biology, 2008, 183, 579-581.	2.3	19
148	D. melanogaster, mitochondria and neurodegeneration: small model organism, big discoveries. Molecular and Cellular Neurosciences, 2013, 55, 77-86.	1.0	19
149	Prohibitin(g) Cancer: Aurilide and Killing by Opa1-Dependent Cristae Remodeling. Chemistry and Biology, 2011, 18, 8-9.	6.2	18
150	Mitochondrial dynamics and physiology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 148-149.	1.9	18
151	Deletion of the mitochondria-shaping protein Opa1 during early thymocyte maturation impacts mature memory T cell metabolism. Cell Death and Differentiation, 2021, 28, 2194-2206.	5.0	18
152	Sustained intracellular calcium rise mediates neuronal mitophagy in models of autosomal dominant optic atrophy. Cell Death and Differentiation, 2022, 29, 167-177.	5.0	18
153	Milder degenerative effects of Carfilzomib vs. Bortezomib in the Drosophila model: a link to clinical adverse events. Scientific Reports, 2017, 7, 17802.	1.6	17
154	PARP Inhibitor PJ34 Protects Mitochondria and Induces DNA-Damage Mediated Apoptosis in Combination With Cisplatin or Temozolomide in B16F10 Melanoma Cells. Frontiers in Physiology, 2019, 10, 538.	1.3	16
155	Functional wiring of proteostatic and mitostatic modules ensures transient organismal survival during imbalanced mitochondrial dynamics. Redox Biology, 2019, 24, 101219.	3.9	15
156	Transient Exposure of Endothelial Cells to Doxorubicin Leads to Long-Lasting Vascular Endothelial Growth Factor Receptor 2 Downregulation. Cells, 2022, 11, 210.	1.8	13
157	OPA1, a new mitochondrial target in cancer therapy. Aging, 2020, 12, 20931-20933.	1.4	12
158	When separation means death: killing through the mitochondria, but starting from the endoplasmic reticulum. EMBO Journal, 2009, 28, 1681-1683.	3.5	11
159	The INs and OUTs of mitofusins. Journal of Cell Biology, 2018, 217, 439-440.	2.3	10
160	Interactions of Chloromethyltetramethylrosamine (Mitotracker Orangetm) with Isolated Mitochondria and Intact Cells. Annals of the New York Academy of Sciences, 1999, 893, 391-395.	1.8	9
161	A BID on mitochondria with MTCH2. Cell Research, 2010, 20, 863-865.	5.7	9
162	Opa1 Overexpression Protects from Early-Onset Mpv17â^'/â^'-Related Mouse Kidney Disease. Molecular Therapy, 2020, 28, 1918-1930.	3.7	9

#	Article	IF	CITATIONS
163	Mitofusin 2 Regulates STIM1 Migration from the Ca2+ Store to the Plasma Membrane in Cells with Depolarized Mitochondria. Journal of Biological Chemistry, 2011, 286, 12189-12201.	1.6	9
164	Flaming Mitochondria: The Anti-inflammatory Drug Leflunomide Boosts Mitofusins. Cell Chemical Biology, 2018, 25, 231-233.	2.5	8
165	Rapidly purified ganglion cells from neonatal mouse retinas allow studies of mitochondrial morphology and autophagy. Pharmacological Research, 2018, 138, 16-24.	3.1	8
166	MCUB Hearts Mitochondria in Sickness, Less in Health. Circulation, 2019, 140, 1734-1736.	1.6	7
167	P73 C-terminus is dispensable for multiciliogenesis. Cell Cycle, 2020, 19, 1833-1845.	1.3	7
168	Laying the foundations of programmed cell death. Cell Death and Differentiation, 2006, 13, 1245-1247.	5.0	6
169	The SUMO arena goes mitochondrial with MAPL. EMBO Reports, 2009, 10, 694-696.	2.0	6
170	Proenkephalin Derived Peptides Are Involved in the Modulation of Mitochondrial Respiratory Control During Epileptogenesis. Frontiers in Molecular Neuroscience, 2018, 11, 351.	1.4	6
171	Shaping fuel utilization by mitochondria. Current Biology, 2022, 32, R618-R623.	1.8	6
172	To fuse and to protect. A novel role for CED-9 in mitochondrial morphology reveals an ancient function. Cell Death and Differentiation, 2006, 13, 1833-1834.	5.0	4
173	Phagocytosis: Coupling of Mitochondrial Uncoupling andÂEngulfment. Current Biology, 2011, 21, R852-R854.	1.8	4
174	Tonight, the same old, deadly programme: BH3-only proteins, mitochondria and yeast. EMBO Journal, 2011, 30, 2754-2756.	3.5	4
175	When numbers matters: mitochondrial DNA and gliomagenesis. Cell Death and Differentiation, 2013, 20, 1601-1602.	5.0	4
176	Transgene expression in mice of the Opa1 mitochondrial transmembrane protein through bicontinuous cubic lipoplexes containing gemini imidazolium surfactants. Journal of Nanobiotechnology, 2021, 19, 425.	4.2	4
177	In Epilepsy, BAD Is Not Really Bad. Neuron, 2012, 74, 600-602.	3.8	3
178	Leducq Network. Circulation Research, 2018, 123, 323-325.	2.0	3
179	Finding a new balance to cure Charcot-Marie-Tooth 2A. Journal of Clinical Investigation, 2019, 129, 1533-1535.	3.9	3
180	O ROM(e)O1, ROM(e)O1, Wherefore Art Thou ROM(e)O1?. Science Signaling, 2014, 7, pe2.	1.6	2

#	Article	IF	CITATIONS
181	The organelle replication connection. Nature, 2016, 538, 326-327.	13.7	2
182	Mitochondrial dynamics: roles in exercise physiology and muscle mass regulation. Current Opinion in Physiology, 2022, 27, 100550.	0.9	2
183	Chemical modification of the mitochondrial permeability transition pore by specific amino acid reagents. Drug Development Research, 1999, 46, 14-17.	1.4	1
184	Cristae Remodeling and Mitochondrial Fragmentation: A Checkpoint for Cytochrome c Release and Apoptosis?. , 2010, , 253-270.		1
185	An ode to mitochondria biologists, new and old. Biochemical and Biophysical Research Communications, 2018, 500, 1.	1.0	1
186	Shipping Calpastatin to the Rescue: Prevention of Neuromuscular Degeneration through Mitofusin 2. Cell Metabolism, 2018, 28, 536-538.	7.2	1
187	Too close not to encyst: Polycystic kidney disease and interorganellar contact sites. Science Signaling, 2019, 12, .	1.6	1
188	Beware of regional heterogeneity when assessing the role of schools in the SARS-CoV-2 second wave in Italy—Authors´reply Lancet Regional Health - Europe, The, 2021, 8, 100190.	3.0	1
189	Stanley J. Korsmeyer (1950–2005). Journal of Bioenergetics and Biomembranes, 2005, 37, 109-109.	1.0	0
190	Mitochondrial dynamics in cell life and death. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 413.	1.9	0
191	S9.7 Dominant optic atrophy caused by a novel OPA1 mutation: Disruption of the mitochondrial network with preserved bioenergetics. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S56.	0.5	0
192	Editorial. Seminars in Cell and Developmental Biology, 2010, 21, 541-541.	2.3	0
193	Mitochondrial Morphology and Function. , 2012, , 217-229.		Ο
194	2SAA-02 Mitochondrial fusion controls differentiation of ESCs into cardiac cells via a novel pathway of calcineurin and Notch signaling(2SAA Mitochondrial neo-biology explored from a membrane) Tj ETQq0 0 0 rg	BT /Overlc	ock 10 Tf 50 22
195	Cristae remodeling by Opa1 determines F 0 F 1 -ATP synthase stability and mitochondrial bioenergetics. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e25.	O.5	0
196	Judging a tumor cell by its cover: a matter of mitochondrial contact sites. EMBO Journal, 2017, 36, 1465-1467.	3.5	0
197	RevAMPing Mitochondrial Shape to Live Longer. Cell Metabolism, 2017, 26, 805-806.	7.2	0
198	Hyperactivation of Nrf2 increases stress tolerance at the cost of aging acceleration due to metabolic deregulation. Free Radical Biology and Medicine, 2018, 128, S128.	1.3	0

#	Article	IF	CITATIONS
199	Mitochondrial cristae shape regulates ROS production under restrictive glycolysis. Free Radical Biology and Medicine, 2021, 165, 18.	1.3	Ο
200	Revisiting the evidence for physical distancing, face masks, and eye protection. Lancet, The, 2021, 398, 660-661.	6.3	0
201	Concepts Mitochondrial Dynamics. , 2021, , 102-106.		0
202	Mitochondria Dynamics: Definition, Players and Associated Disorders. , 2021, , 119-142.		0
203	Arachidonic acid induces the mitochondrial permeability transition, cytochrome c release and apoptosis. European Journal of Anaesthesiology, 2000, 17, 14-16.	0.7	0
204	The Mitochondrial Pathway: Focus on Shape Changes. , 2009, , 151-175.		0
205	Respiration Mitochondrial Dynamics. , 2013, , 472-476.		0