
Mohamed A Hassaan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6469575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The use of biochar-NH2 produced from watermelon peels as a natural adsorbent for the removal of Cu(II) ion from water. Biomass Conversion and Biorefinery, 2024, 14, 1975-1991.	4.6	17
2	Biosorption of acid brown 14 dye to mandarin-CO-TETA derived from mandarin peels. Biomass Conversion and Biorefinery, 2024, 14, 5053-5073.	4.6	13
3	Degradation mechanism of Direct Red 23 dye by advanced oxidation processes: a comparative study. Toxin Reviews, 2022, 41, 38-47.	3.4	19
4	Eco-friendly biogas production from algal biomass. , 2022, , 225-249.		0
5	Algal biomass for bioethanol and biobutanol production. , 2022, , 251-279.		2
6	Pesticides removal techniques from the aquatic environment. , 2022, , 483-516.		0
7	The Use of Mandarin-Biochar-O3-TETA (MBT) Produced from Mandarin Peels as a Natural Adsorbent for the Removal of Acid Red 35 (AR35) Dye from Water. Environmental Processes, 2022, 9, .	3.5	18
8	Advanced oxidation of acid yellow 11 dye; detoxification and degradation mechanism. Toxin Reviews, 2021, 40, 1472-1480.	3.4	17
9	Enhancement of biogas production via green ZnO nanoparticles: experimental results of selected herbaceous crops. Chemical Engineering Communications, 2021, 208, 242-255.	2.6	31
10	Green Synthesis and Application of Metal and Metal Oxide Nanoparticles. , 2021, , 831-857.		0
11	Applications of Photochemical Oxidation in Textile Industry. , 2021, , 1-30.		1
12	Green Synthesis and Application of Metal and Metal Oxide Nanoparticles. , 2021, , 1-27.		2
13	Micro and Nanoplastics analysis: Focus on their classification, sources, and impacts in marine environment. Regional Studies in Marine Science, 2021, 42, 101625.	0.7	15
14	Enhancement of Biogas Production from Macroalgae Ulva latuca via Ozonation Pretreatment. Energies, 2021, 14, 1703.	3.1	26
15	Chemical mitigation technology for wax deposition in submarine oil pipeline systems. Egyptian Journal of Chemistry, 2021, .	0.2	2
16	Efficiency of Fe3O4 Nanoparticles with Different Pretreatments for Enhancing Biogas Yield of Macroalgae Ulva intestinalis Linnaeus. Molecules, 2021, 26, 5105.	3.8	29
17	Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe2O3 NPs on Biogas Production from Red Algae Pterocladia capillacea. Sustainability, 2021, 13, 9275.	3.2	19

Applications of Photochemical Oxidation in Textile Industry. , 2021, , 1975-2003.

Mohamed A Hassaan

#	Article	IF	CITATIONS
19	Classification and identification of different minerals in the Mediterranean sediments using PSA, FTIR, and XRD techniques. Marine Pollution Bulletin, 2021, 173, 113070.	5.0	13
20	Ballast Water Definition, Components, Aquatic Invasive Species, Control and Management and Treatment Technologies. Environmental Chemistry for A Sustainable World, 2021, , 289-304.	0.5	1
21	Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egyptian Journal of Aquatic Research, 2020, 46, 207-220.	2.2	265
22	Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw. Energies, 2020, 13, 5001.	3.1	25
23	Highly crystalline heterogeneous catalyst synthesis from industrial waste for sustainable biodiesel production. Egyptian Journal of Chemistry, 2019, .	0.2	6
24	Photocatalytic degradation of reactive black 5 using Photo-Fenton and ZnO nanoparticles under UV irradiation. Egyptian Journal of Chemistry, 2019, .	0.2	11
25	The impact of maritime activities on the leachable heavy metals in the seafloor sediments of Port Tawfiq and Tersana harbours, Gulf of Suez, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 2019, 22, 523-536.	0.4	1
26	Advanced Oxidation Process (AOP) for Detoxification of Acid Red 17 Dye Solution and Degradation Mechanism. Environmental Processes, 2018, 5, 95-113.	3.5	40
27	Effects of Ultrasound and Green Synthesis ZnO Nanoparticles on Biogas Production from Olive Pomace. Energy Procedia, 2018, 148, 940-947.	1.8	29
28	Green Synthesis of Ag and Au Nanoparticles from Micro and Macro Algae - Review. International Journal of Atmospheric and Oceanic Sciences, 2018, 2, 10.	0.3	15
29	Evaluation of some leachable heavy metals in the Seafloor sediments of the two navigation Harbours El Zaitiya and Adabiya, Gulf of Suez, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 2018, 22, 77-92.	0.4	5
30	Advanced oxidation processes of Mordant Violet 40 dye in freshwater and seawater. Egyptian Journal of Aquatic Research, 2017, 43, 1-9.	2.2	52
31	Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewater. Egyptian Journal of Aquatic Research, 2017, 43, 11-19.	2.2	99
32	Estimation of the Redox Potential of Lake Mariut Drainage System (Qalaa and Umum Drains). Hydrology, 2017, 5, 82.	0.6	3
33	Towards Potential Removal of Malachite Green from Wastewater: Adsorption Process Optimization and Prediction. Materials Science Forum, 0, 1008, 213-221.	0.3	6
34	Dual action of both green and chemically synthesized zinc oxide nanoparticles: antibacterial activity and removal of Congo red dye. , 0, 218, 423-435.		16
35	Ocean Literacy across the Mediterranean Sea basin: Evaluating Middle School Students' Knowledge, Attitudes, and Behaviour towards Ocean Sciences Issues. Mediterranean Marine Science, 0, , .	1.6	1
36	Copper(II) ion removal by chemically and physically modified sawdust biochar. Biomass Conversion and Biorefinery, 0, , .	4.6	10

#	Article	IF	CITATIONS
37	Adsorption of methylene blue (MB) dye on ozone, purified and sonicated sawdust biochars. Biomass Conversion and Biorefinery, 0, , .	4.6	15