
José SÃ;nchez-Prieto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6469489/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitric Oxide and Synaptic Transmission in the Cerebellum. , 2022, , 1025-1046.		0
2	Effective glutamate clearance from the systemic circulation by hemodialysis: Potential relevance for cerebral ischemia management. Artificial Organs, 2021, 45, 1183-1188.	1.0	1
3	Identification of BiP as a CB ₁ Receptor-Interacting Protein That Fine-Tunes Cannabinoid Signaling in the Mouse Brain. Journal of Neuroscience, 2021, 41, 7924-7941.	1.7	14
4	β-Adrenergic Receptors/Epac Signaling Increases the Size of the Readily Releasable Pool of Synaptic Vesicles Required for Parallel Fiber LTP. Journal of Neuroscience, 2020, 40, 8604-8617.	1.7	24
5	Endocannabinoid signalling in stem cells and cerebral organoids drives differentiation to deep layer projection neurons via CB1 receptors. Development (Cambridge), 2020, 147, .	1.2	9
6	The loss of β adrenergic receptor mediated release potentiation in a mouse model of fragile X syndrome. Neurobiology of Disease, 2019, 130, 104482.	2.1	9
7	Photoconversion of FM1-43 Reveals Differences in Synaptic Vesicle Recycling and Sensitivity to Pharmacological Disruption of Actin Dynamics in Individual Synapses. ACS Chemical Neuroscience, 2019, 10, 2045-2059.	1.7	4
8	Nitric Oxide and Synaptic Transmission in the Cerebellum. , 2019, , 1-22.		0
9	Pathway-Specific Control of Striatal Neuron Vulnerability by Corticostriatal Cannabinoid CB1 Receptors. Cerebral Cortex, 2018, 28, 307-322.	1.6	25
10	Bidirectional modulation of glutamatergic synaptic transmission by metabotropic glutamate type 7 receptors at Schaffer collateral–CA1 hippocampal synapses. Journal of Physiology, 2018, 596, 921-940.	1.3	12
11	AhR Deletion Promotes Aberrant Morphogenesis and Synaptic Activity of Adult-Generated Granule Neurons and Impairs Hippocampus-Dependent Memory. ENeuro, 2018, 5, ENEURO.0370-17.2018.	0.9	25
12	<scp>CB</scp> 1 receptors downâ€regulate a <scp>cAMP</scp> /Epac2/ <scp>PLC</scp> pathway to silence the nerve terminals of cerebellar granule cells. Journal of Neurochemistry, 2017, 142, 350-364.	2.1	9
13	Brefeldin A sensitive mechanisms contribute to endocytotic membrane retrieval and vesicle recycling in cerebellar granule cells. Journal of Neurochemistry, 2017, 141, 662-675.	2.1	8
14	Altered Synaptic Membrane Retrieval after Strong Stimulation of Cerebellar Granule Neurons in Cyclic GMP-Dependent Protein Kinase II (cGKII) Knockout Mice. International Journal of Molecular Sciences, 2017, 18, 2281.	1.8	4
15	Cross-talk between metabotropic glutamate receptor 7 and beta adrenergic receptor signaling at cerebrocortical nerve terminals. Neuropharmacology, 2016, 101, 412-425.	2.0	17
16	A restricted population of CB ₁ cannabinoid receptors with neuroprotective activity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8257-8262.	3.3	136
17	The Regulation of Synaptic Vesicle Recycling by cGMP-Dependent Protein Kinase Type II in Cerebellar Granule Cells under Strong and Sustained Stimulation. Journal of Neuroscience, 2014, 34, 8788-8799.	1.7	15
18	Cannabinoid Type 1 Receptors Transiently Silence Glutamatergic Nerve Terminals of Cultured Cerebellar Granule Cells. PLoS ONE, 2014, 9, e88594.	1.1	17

#	Article	IF	CITATIONS
19	Potentiation of mGlu7 receptor-mediated glutamate release at nerve terminals containing N and P/Q type Ca2+ channels. Neuropharmacology, 2013, 67, 213-222.	2.0	8
20	The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1820-1831.	1.9	14
21	β-Adrenergic Receptors Activate Exchange Protein Directly Activated by cAMP (Epac), Translocate Munc13-1, and Enhance the Rab3A-RIM1I± Interaction to Potentiate Glutamate Release at Cerebrocortical Nerve Terminals. Journal of Biological Chemistry, 2013, 288, 31370-31385.	1.6	42
22	Studying synaptic efficiency by post-hoc immunolabelling. BMC Neuroscience, 2013, 14, 127.	0.8	0
23	Amelioration of ischemic brain damage by peritoneal dialysis. Journal of Clinical Investigation, 2013, 123, 4359-4363.	3.9	48
24	Efficient synaptic vesicle recycling after intense exocytosis concomitant with the accumulation of non-releasable endosomes at early developmental stages. Journal of Cell Science, 2012, 125, 422-434.	1.2	14
25	Functional cGMPâ€gated channels in cerebellar granule cells. Journal of Cellular Physiology, 2012, 227, 2252-2263.	2.0	11
26	Inhibitors of diacylglycerol metabolism reduce time to the onset of glutamate release potentation by mGlu7 receptors. Neuroscience Letters, 2011, 500, 144-147.	1.0	7
27	Non-additive potentiation of glutamate release by phorbol esters and metabotropic mGlu7 receptor in cerebrocortical nerve terminals. Journal of Neurochemistry, 2011, 116, 476-485.	2.1	14
28	Membrane depolarization regulates AMPA receptor subunit expression in cerebellar granule cells in culture. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 14-26.	1.9	5
29	The Metabotropic Glutamate Receptor mGlu7 Activates Phospholipase C, Translocates Munc-13-1 Protein, and Potentiates Glutamate Release at Cerebrocortical Nerve Terminals. Journal of Biological Chemistry, 2010, 285, 17907-17917.	1.6	55
30	Partial compensation for Nâ€ŧype Ca ²⁺ channel loss by P/Qâ€ŧype Ca ²⁺ channels underlines the differential release properties supported by these channels at cerebrocortical nerve terminals. European Journal of Neuroscience, 2009, 29, 1131-1140.	1.2	16
31	Subcellular compartmentâ€specific molecular diversity of pre―and postâ€synaptic GABA _B â€activated GIRK channels in Purkinje cells. Journal of Neurochemistry, 2009, 110, 1363-1376.	2.1	65
32	Preâ€synaptic GABA _B receptors inhibit glutamate release through GIRK channels in rat cerebral cortex. Journal of Neurochemistry, 2008, 107, 1506-1517.	2.1	68
33	The inhibition of release by mGlu7 receptors is independent of the Ca2+ channel type but associated to GABAB and adenosine A1 receptors. Neuropharmacology, 2008, 55, 464-473.	2.0	16
34	mGluR7 inhibits glutamate release through a PKCâ€independent decrease in the activity of P/Qâ€ŧype Ca ²⁺ channels and by diminishing cAMP in hippocampal nerve terminals. European Journal of Neuroscience, 2007, 26, 312-322.	1.2	39
35	Neuroprotectant minocycline depresses glutamatergic neurotransmission and Ca ²⁺ signalling in hippocampal neurons. European Journal of Neuroscience, 2007, 26, 2481-2495.	1.2	94
36	CB1 receptors diminish both Ca2+influx and glutamate release through two different mechanisms active in distinct populations of cerebrocortical nerve terminals. Journal of Neurochemistry, 2007, 101, 1471-1482.	2.1	35

José SÃinchez-Prieto

#	Article	IF	CITATIONS
37	The coexistence of multiple receptors in a single nerve terminal provides evidence for pre-synaptic integration. Journal of Neurochemistry, 2007, 103, 2314-2326.	2.1	12
38	NMDA induces post-transcriptional regulation of α2-guanylyl-cyclase-subunit expression in cerebellar granule cells. Journal of Cell Science, 2006, 119, 1622-1631.	1.2	15
39	Expression of cGMP-dependent protein kinases (I and II) and neuronal nitric oxide synthase in the developing rat cerebellum. Brain Research Bulletin, 2005, 65, 111-115.	1.4	14
40	Inhibition of N- and P/Q-type Ca2+channels by cannabinoid receptors in single cerebrocortical nerve terminals. FEBS Letters, 2005, 579, 768-772.	1.3	7
41	The modulation of Ca2+ and K+ channels but not changes in cAMP signaling contribute to the inhibition of glutamate release by cannabinoid receptors in cerebrocortical nerve terminals. Neuropharmacology, 2005, 48, 547-557.	2.0	11
42	Dual signaling by mGluR5a results in bi-directional modulation of N-type Ca2+ channels. FEBS Letters, 2004, 576, 428-432.	1.3	8
43	Elements of the nitric oxide/cGMP pathway expressed in cerebellar granule cells: biochemical and functional characterisation. Neurochemistry International, 2004, 45, 833-843.	1.9	27
44	Co-activation of PKA and PKC in cerebrocortical nerve terminals synergistically facilitates glutamate release. Journal of Neurochemistry, 2003, 87, 1101-1111.	2.1	46
45	Co-expression of Metabotropic Glutamate Receptor 7 and N-type Ca2+ Channels in Single Cerebrocortical Nerve Terminals of Adult Rats. Journal of Biological Chemistry, 2003, 278, 23955-23962.	1.6	31
46	Differential expression of NO-sensitive guanylyl cyclase subunits during the development of rat cerebellar granule cells: regulation via N-methyl-D-aspartate receptors. Journal of Cell Science, 2003, 116, 3165-3175.	1.2	32
47	The Inhibition of Glutamate Release by Metabotropic Glutamate Receptor 7 Affects Both [Ca2+] and cAMP. Journal of Biological Chemistry, 2002, 277, 14092-14101.	1.6	75
48	Subtype-specific Expression of Group III Metabotropic Glutamate Receptors and Ca2+ Channels in Single Nerve Terminals. Journal of Biological Chemistry, 2002, 277, 47796-47803.	1.6	32
49	Differential coupling of N- and P/Q-type calcium channels to glutamate exocytosis in the rat cerebral cortex. Neuroscience Letters, 2002, 330, 29-32.	1.0	80
50	Protein Phosphatase 1 and 2A Inhibitors Prolong the Switch in the Control of Glutamate Release by Group I Metabotropic Glutamate Receptors. Journal of Neurochemistry, 2002, 75, 1566-1574.	2.1	17
51	An activity-dependent switch from facilitation to inhibition in the control of excitotoxicity by group I metabotropic glutamate receptors. European Journal of Neuroscience, 2001, 13, 1469-1478.	1.2	62
52	Protein phosphatase 2B inhibitors mimic the action of arachidonic acid and prolong the facilitation of glutamate release by group I mGlu receptors. Neuropharmacology, 2000, 39, 1544-1553.	2.0	11
53	Group-I metabotropic glutamate receptors: hypotheses to explain their dual role in neurotoxicity and neuroprotection. Neuropharmacology, 1999, 38, 1477-1484.	2.0	153
54	Switch from Facilitation to Inhibition of Excitatory Synaptic Transmission by Group I mGluR Desensitization. Neuron, 1998, 21, 1477-1486.	3.8	122

José SÃinchez-Prieto

#	Article	IF	CITATIONS
55	Functional Switch from Facilitation to Inhibition in the Control of Glutamate Release by Metabotropic Glutamate Receptors. Journal of Biological Chemistry, 1998, 273, 1951-1958.	1.6	83
56	Modulation of glutamate release by a nitric oxide/cyclic GMP-dependent pathway. European Journal of Pharmacology, 1997, 321, 247-257.	1.7	55
57	Presynaptic Modulation of Glutamate Release Targets Different Calcium Channels in Rat Cerebrocortical Nerve Terminals. European Journal of Neuroscience, 1997, 9, 2009-2018.	1.2	127
58	Presynaptic receptors and the control of glutamate exocytosis. Trends in Neurosciences, 1996, 19, 235-239.	4.2	139
59	A Decrease in [Ca2+]cbut not in cAMP Mediates L-AP4 Inhibition of Glutamate Release: PKC-mediated Suppression of this Inhibitory Pathway. European Journal of Neuroscience, 1996, 8, 700-709.	1.2	55
60	cAMP-dependent Facilitation of Glutamate Release by β-Adrenergic Receptors in Cerebrocortical Nerve Terminals. Journal of Biological Chemistry, 1996, 271, 30554-30560.	1.6	54
61	Rapid Desensitization of the Metabotropic Glutamate Receptor that Facilitates Glutamate Release in Rat Cerebrocortical Nerve Terminals. European Journal of Neuroscience, 1994, 6, 115-120.	1.2	98
62	Unchanged exocytotic release of glutamic acid in cortex and neostriatum of the rat during aging. Brain Research Bulletin, 1994, 33, 357-359.	1.4	17
63	Role of arachidonic acid in the facilitation of glutamate release from rat cerebrocortical synaptosomes independent of metabotropic glutamate receptor responses. Neuroscience Letters, 1994, 174, 9-13.	1.0	21
64	Glutamate Exocytosis and MARCKS Phosphorylation Are Enhanced by a Metabotropic Glutamate Receptor Coupled to a Protein Kinase C Synergistically Activated by Diacylglycerol and Arachidonic Acid. Journal of Neurochemistry, 1994, 63, 1303-1310.	2.1	74
65	Metabotropic Glutamate Receptors and the Activation of Protein Kinase C in the Control of Glutamate Release. , 1994, , 65-75.		0
66	PKC-independent inhibition of glutamate exocytosis by arachidonic acid in rat cerebrocortical synaptosomes. FEBS Letters, 1992, 296, 317-319.	1.3	14
67	Positive feedback of glutamate exocytosis by metabotropic presynaptic receptor stimulation. Nature, 1992, 360, 163-166.	13.7	358
68	Activation of Protein Kinase C by Phorbol Esters and Arachidonic Acid Required for the Optimal Potentiation of Glutamate Exocytosis. Journal of Neurochemistry, 1992, 59, 1574-1577.	2.1	37
69	Glutamate exocytosis evoked by 4-aminopyridine is inhibited by free fatty acids released from rat cerebrocortical synaptosomes. Neuroscience Letters, 1991, 126, 41-44.	1.0	32
70	Inhibition of Glutamate Release by Arachidonic Acid in Rat Cerebrocortical Synaptosomes. Journal of Neurochemistry, 1991, 57, 718-721.	2.1	30
71	Ca2+-Independent Release of Glutamate During In Vitro Anoxia in Isolated Nerve Terminals. Journal of Neurochemistry, 1991, 57, 1159-1164.	2.1	48
72	An Ion Channel Locus for the Protein Kinase C Potentiation of Transmitter Glutamate Release from Guinea Pig Cerebrocortical Synaptosomes. Journal of Neurochemistry, 1991, 57, 1398-1404.	2.1	162

#	Article	IF	CITATIONS
73	Isolation of rat liver lysosomes by a single two-phase partition on dextran/polyethylene glycol. Analytical Biochemistry, 1990, 185, 249-253.	1.1	21
74	Occurrence of a Large Ca2+-Independent Release of Glutamate During Anoxia in Isolated Nerve Terminals (Synaptosomes). Journal of Neurochemistry, 1988, 50, 1322-1324.	2.1	214
75	Phorbol ester translocation of protein kinase C in guinea-pig synaptosomes and the potentiation of calcium-dependent glutamate release. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 970, 157-165.	1.9	51
76	Synaptosomal Bioenergetics and the Mechanism of Amino Acid Transmitter Release. , 1988, , 185-198.		1
77	Calcium-Dependent and-Independent Release of Glutamate from Synaptosomes Monitored by Continuous Fluorometry. Journal of Neurochemistry, 1987, 49, 50-57.	2.1	463
78	Characterization of the Exocytotic Release of Glutamate from Guinea-Pig Cerebral Cortical Synaptosomes. Journal of Neurochemistry, 1987, 49, 58-64.	2.1	144
79	Effects of In Vitro Anoxia and Low pH on Acetylcholine Release by Rat Brain Synaptosomes. Journal of Neurochemistry, 1987, 48, 1278-1284.	2.1	12
80	Botulinum toxin A blocks glutamate exocytosis from guinea-pig cerebral cortical synaptosomes. FEBS Journal, 1987, 165, 675-681.	0.2	77