Martina Lahmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6469426/publications.pdf

Version: 2024-02-01

50 papers

2,623 citations

279798 23 h-index 206112 48 g-index

52 all docs 52 docs citations

52 times ranked 3505 citing authors

#	Article	IF	CITATIONS
1	Multivalent glycoconjugates as anti-pathogenic agents. Chemical Society Reviews, 2013, 42, 4709-4727.	38.1	464
2	Functional Adaptation of BabA, the <i>H. pylori</i> ABO Blood Group Antigen Binding Adhesin. Science, 2004, 305, 519-522.	12.6	368
3	The Fucose-binding Lectin from Ralstonia solanacearum. Journal of Biological Chemistry, 2005, 280, 27839-27849.	3.4	160
4	Gold nanoparticles as carriers for a synthetic <i>Streptococcus pneumoniae</i> type 14 conjugate vaccine. Nanomedicine, 2012, 7, 651-662.	3.3	158
5	Identification of the Smallest Structure Capable of Evoking Opsonophagocytic Antibodies against <i>Streptococcus pneumoniae</i> Type 14. Infection and Immunity, 2008, 76, 4615-4623.	2.2	95
6	The fimbrial adhesin F17â€G of enterotoxigenic <i>Escherichia coli</i> has an immunoglobulinâ€like lectin domain that binds <i>N</i> à€acetylglucosamine. Molecular Microbiology, 2003, 49, 705-715.	2.5	89
7	Structural Insights into Polymorphic ABO Glycan Binding by Helicobacter pylori. Cell Host and Microbe, 2016, 19, 55-66.	11.0	88
8	A Soluble Fucose-Specific Lectin from Aspergillus fumigatus Conidia - Structure, Specificity and Possible Role in Fungal Pathogenicity. PLoS ONE, 2013, 8, e83077.	2.5	87
9	Ethyl 2-acetamido-4,6-di-O-benzyl-2,3-N,O-carbonyl-2-deoxy-1-thio- \hat{l}^2 -d-glycopyranoside as a versatile GlcNAc donor. Chemical Communications, 2005, , 3044.	4.1	81
10	Î ² -Propeller Crystal Structure of Psathyrella velutina Lectin: An Integrin-like Fungal Protein Interacting with Monosaccharides and Calcium. Journal of Molecular Biology, 2006, 357, 1575-1591.	4.2	77
11	A TNF-like Trimeric Lectin Domain from Burkholderia cenocepacia with Specificity for Fucosylated Human Histo-Blood Group Antigens. Structure, 2010, 18, 59-72.	3.3	76
12	Investigations of Glycosylation Reactions with 2-N-Acetyl-2N,3O-oxazolidinone-Protected Glucosamine Donors. Journal of Organic Chemistry, 2008, 73, 7181-7188.	3.2	72
13	SmI2/Water/Amine Mediates Cleavage of Allyl Ether Protected Alcohols:  Application in Carbohydrate Synthesis and Mechanistic Considerations. Organic Letters, 2003, 5, 4085-4088.	4.6	70
14	The Tyrosine Gate as a Potential Entropic Lever in the Receptor-Binding Site of the Bacterial Adhesin FimH. Biochemistry, 2012, 51, 4790-4799.	2.5	67
15	Preparation and immunogenicity of gold glyco-nanoparticles as antipneumococcal vaccine model. Nanomedicine, 2017, 12, 13-23.	3.3	66
16	One-Pot Oligosaccharide Synthesis Exploiting Solvent Reactivity Effects. Organic Letters, 2000, 2, 3881-3882.	4.6	51
17	Investigation of the reactivity difference between thioglycoside donors with variant aglycon parts. Canadian Journal of Chemistry, 2002, 80, 889-893.	1.1	49
18	Ligands of the asialoglycoprotein receptor for targeted gene delivery, part 1: Synthesis of and binding studies with biotinylated cluster glycosides containing N-acetylgalactosamine. Glycoconjugate Journal, 2004, 21, 227-241.	2.7	35

#	Article	IF	CITATIONS
19	Synthesis of oligosaccharides corresponding to Vibrio cholerae O139 polysaccharide structures containing dideoxy sugars and a cyclic phosphate. Organic and Biomolecular Chemistry, 2006, 4, 1236.	2.8	30
20	Architectures of Multivalent Glycomimetics for Probing Carbohydrate–Lectin Interactions. Topics in Current Chemistry, 2009, 288, 183-165.	4.0	30
21	Synthesis of α-tocopheryl oligosaccharides. Carbohydrate Research, 1997, 299, 23-31.	2.3	28
22	Antiprotozoal Effect of Saponins in the Rumen Can Be Enhanced by Chemical Modifications in Their Structure. Frontiers in Microbiology, 2017, 08, 399.	3.5	27
23	Architecture and Evolution of Blade Assembly in \hat{l}^2 -propeller Lectins. Structure, 2019, 27, 764-775.e3.	3.3	27
24	Block Synthesis of Streptococcus pneumoniae Type 14 Capsular Polysaccharide Structures*. Journal of Carbohydrate Chemistry, 2005, 24, 379-391.	1.1	24
25	Glycocluster Design for Improved Avidity and Selectivity in Blocking Human Lectin/Plant Toxin Binding to Glycoproteins and Cells. Molecular Pharmaceutics, 2010, 7, 2270-2279.	4.6	24
26	Isolation and characterisation of 13 pterosins and pterosides from bracken (Pteridium aquilinum (L.)) Tj ETQq0 0	0 <u>rg</u> BT /O	verlock 10 Tf
27	Solving the phase problem for carbohydrate-binding proteins using selenium derivatives of their ligands: a case study involving the bacterial F17-G adhesin. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1012-1015.	2.5	21
28	A facile approach to diosgenin and furostan type saponins bearing a $3\hat{l}^2$ -chacotriose moiety. Carbohydrate Research, 2002, 337, 2153-2159.	2.3	20
29	Lactosamine from lactulose via the Heyns rearrangement: a practical protocol. Tetrahedron Letters, 2013, 54, 3960-3961.	1.4	19
30	Synthesis of the tetrasaccharide α-d-Glcp-(1â†'3)-α-d-Manp-(1â†'2)-α-d-Manp-(1â†'2)-α-d-Manp recognized by Calreticulin/Calnexin. Carbohydrate Research, 2005, 340, 2558-2562.	2.3	17
31	Improving the antiprotozoal effect of saponins in the rumen by combination with glycosidase inhibiting iminosugars or by modification of their chemical structure. PLoS ONE, 2017, 12, e0184517.	2.5	16
32	Atomic Mapping of the Sugar Interactions in One-Site and Two-Site Mutants of Cyanovirin-N by NMR Spectroscopy. Biochemistry, 2008, 47, 3625-3635.	2.5	15
33	Synthesis of Dihydrodiosgenin Glycosides as Mimetics of Bidesmosidic Steroidal Saponins. European Journal of Organic Chemistry, 2003, 2003, 4003-4011.	2.4	14
34	Synthesis of the Lewis b hexasaccharide and HSA-conjugates thereof. Glycoconjugate Journal, 2004, 21, 251-256.	2.7	14
35	Design and synthesis of HIV-1 protease inhibitors. Novel tetrahydrofuran P2/P2′-groups interacting with Asp29/30 of the HIV-1 protease. Determination of binding from X-ray crystal structure of inhibitor protease complex. Bioorganic and Medicinal Chemistry, 2003, 11, 1107-1115.	3.0	13
36	NMR study of hydroxy protons of di―and trimannosides, substructures of Manâ€9. Magnetic Resonance in Chemistry, 2007, 45, 1076-1080.	1.9	13

#	Article	IF	CITATIONS
37	Synthesis of urine drug metabolites: glucuronic acid glycosides of phenol intermediates. Carbohydrate Research, 2007, 342, 970-974.	2.3	13
38	An investigation of the antileishmanial properties of semi-synthetic saponins. RSC Medicinal Chemistry, 2020, 11, 833-842.	3.9	13
39	Synthesis of a polyphosphorylated GPI-anchor core structure. Canadian Journal of Chemistry, 2002, 80, 1105-1111.	1.1	11
40	Impact of natural variation in bacterial F17G adhesins on crystallization behaviour. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1149-1159.	2.5	10
41	Synthesis of monodeoxy analogues of the trisaccharide α-d-Glcp-(1→3)-α-d-Manp-(1→2)-α-d-ManpOMe recognised by Calreticulin/Calnexin. Carbohydrate Research, 2006, 341, 1533-1542.	2.3	10
42	Reversible non-covalent derivatisation of carbon nanotubes with glycosides. Soft Matter, 2009, 5, 2713.	2.7	10
43	Synthesis of Urine Drug Metabolites: Glucuronosyl Esters of Carboxymefloquine, Indoprofen, (S)â€Naproxen, and Desmethyl (S)â€Naproxen. Journal of Carbohydrate Chemistry, 2004, 23, 123-132.	1.1	7
44	Synthesis of 6-PEtN-α-D-GalpNAc-(1â€">6)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">3)-β-D-Galp-(1â€">4)-β-D-GlcpNAc-(1â€">4)-β-D-Galp-(1â€	o, a 2.2	7
45	Synthesis of the Lewis b pentasaccharide and a HSA-conjugate thereof. Tetrahedron, 2010, 66, 7850-7855.	1.9	5
46	Synthesis of Anemoclemosides A and B, Two Saponins Isolated from <i>Anemoclema glaucifolium</i> European Journal of Organic Chemistry, 2020, 2020, 7470-7473.	2.4	3
47	Synthesis of type 1 Lewis b hexasaccharide antigen structures featuring flexible incorporation of <scp>l</scp> -[U- ¹³ C ₆]-fucose for NMR binding studies. Organic and Biomolecular Chemistry, 2020, 18, 4452-4458.	2.8	3
48	Transformations of chromanol and tocopherol and synthesis of ascorbate conjugates. Tetrahedron, 2011, 67, 1654-1664.	1.9	2
49	SmI2/Water/Amine Mediates Cleavage of Allyl Ether Protected Alcohols: Application in Carbohydrate Synthesis and Mechanistic Considerations ChemInform, 2004, 35, no.	0.0	0
50	Synthesis of Glycosyl Vinyl Sulfones for Bioconjugation., 2015,, 88-93.		0