David L Deitcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6469288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell, 1992, 68, 33-51.	13.5	974
2	Polymeric immunoglobulin receptor expressed in MDCK cells transcytoses IgA. Cell, 1986, 46, 613-621.	13.5	310
3	Anatomical Distribution and Cellular Basis for High Levels of Aromatase Activity in the Brain of Teleost Fish: Aromatase Enzyme and mRNA Expression Identify Glia as Source. Journal of Neuroscience, 2001, 21, 8943-8955.	1.7	283
4	Distinct Requirements for Evoked and Spontaneous Release of Neurotransmitter Are Revealed by Mutations in the <i>Drosophila</i> Gene <i>neuronal-synaptobrevin</i> . Journal of Neuroscience, 1998, 18, 2028-2039.	1.7	216
5	Steroid-Dependent Auditory Plasticity Leads to Adaptive Coupling of Sender and Receiver. Science, 2004, 305, 404-407.	6.0	216
6	Deletion of the cytoplasmic domain of the polymeric immunoglobulin receptor prevents basolateral localization and endocytosis. Cell, 1986, 47, 359-364.	13.5	212
7	The Synaptic Protein Syntaxin1 Is Required for Cellularization of Drosophila Embryos. Journal of Cell Biology, 1997, 138, 861-875.	2.3	146
8	Neuropeptide Delivery to Synapses by Long-Range Vesicle Circulation and Sporadic Capture. Cell, 2012, 148, 1029-1038.	13.5	137
9	Distribution of estrogen receptor alpha mRNA in the brain and inner ear of a vocal fish with comparisons to sites of aromatase expression. Journal of Comparative Neurology, 2005, 483, 91-113.	0.9	124
10	Visualization of neuropeptide expression, transport, and exocytosis inDrosophila melanogaster. Journal of Neurobiology, 2001, 49, 159-172.	3.7	118
11	Activity-dependent liberation of synaptic neuropeptide vesicles. Nature Neuroscience, 2005, 8, 173-178.	7.1	103
12	Distribution of androgen receptor mRNA expression in vocal, auditory, and neuroendocrine circuits in a teleost fish. Journal of Comparative Neurology, 2010, 518, 493-512.	0.9	87
13	PCR and patch-clamp analysis of single neurons. Neuron, 1995, 14, 1095-1100.	3.8	85
14	Presynaptic Ryanodine Receptor-Activated Calmodulin Kinase II Increases Vesicle Mobility and Potentiates Neuropeptide Release. Journal of Neuroscience, 2007, 27, 7799-7806.	1.7	81
15	Selective Effects of <i>neuronal-synaptobrevin</i> Mutations on Transmitter Release Evoked by Sustained Versus Transient Ca ²⁺ Increases and by cAMP. Journal of Neuroscience, 1999, 19, 2432-2441.	1.7	73
16	The essential role of bursicon during Drosophiladevelopment. BMC Developmental Biology, 2010, 10, 92.	2.1	67
17	A DrosophilaSNAP-25Null Mutant Reveals Context-Dependent Redundancy WithSNAP-24in Neurotransmission. Genetics, 2002, 162, 259-271.	1.2	57
18	Spastin, atlastin, and ER relocalization are involved in axon but not dendrite regeneration. Molecular Biology of the Cell, 2016, 27, 3245-3256.	0.9	56

DAVID L DEITCHER

#	Article	IF	CITATIONS
19	Genes and channels: patch/voltage-clamp analysis and single-cell RT-PCR. Cell and Tissue Research, 2000, 302, 295-307.	1.5	55
20	Two distinct effects on neurotransmission in a temperature-sensitive SNAP-25 mutant. EMBO Journal, 2001, 20, 6761-6771.	3.5	53
21	Evolution of ligand specificity in vertebrate corticosteroid receptors. BMC Evolutionary Biology, 2011, 11, 14.	3.2	46
22	Morphology and molecular organization of the adult neuromuscular junction ofDrosophila. Journal of Comparative Neurology, 2004, 468, 596-613.	0.9	45
23	Corticosteroid receptor expression in a teleost fish that displays alternative male reproductive tactics. General and Comparative Endocrinology, 2010, 165, 83-90.	0.8	44
24	Differential expression of genes and proteins between electric organ and skeletal muscle in the mormyrid electric fish <i>Brienomyrus brachyistius</i> . Journal of Experimental Biology, 2012, 215, 2479-2494.	0.8	37
25	Conserved role of Drosophila melanogaster FoxP in motor coordination and courtship song. Behavioural Brain Research, 2014, 268, 213-221.	1.2	33
26	Differential Control of Presynaptic CaMKII Activation and Translocation to Active Zones. Journal of Neuroscience, 2011, 31, 9093-9100.	1.7	32
27	Calcium-Activated Potassium (BK) Channels Are Encoded by Duplicate slo1 Genes in Teleost Fishes. Molecular Biology and Evolution, 2009, 26, 1509-1521.	3.5	31
28	Dominant-negative NSF2 disrupts the structure and function ofdrosophila neuromuscular synapses. Journal of Neurobiology, 2002, 51, 261-271.	3.7	29
29	Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3597-3601.	3.3	28
30	Divergent expression of 11β-hydroxysteroid dehydrogenase and 11β-hydroxylase genes between male morphs in the central nervous system, sonic muscle and testis of a vocal fish. General and Comparative Endocrinology, 2010, 167, 44-50.	0.8	26
31	Complex gene organization of synaptic protein SNAP-25 in Drosophila melanogaster. Gene, 1997, 194, 169-177.	1.0	24
32	Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles. Journal of Neuroscience, 2016, 36, 11781-11787.	1.7	23
33	Nearly Neutral Secretory Vesicles in Drosophila Nerve Terminals. Biophysical Journal, 2006, 90, L45-L47.	0.2	20
34	<i>julius seizure</i> , a <i>Drosophila</i> Mutant, Defines a Neuronal Population Underlying Epileptogenesis. Genetics, 2017, 205, 1261-1269.	1.2	16
35	Temporally and spatially partitioned neuropeptide release from individual clock neurons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
36	Characterization of mRNA Expression in Single Neurons. Methods in Molecular Biology, 2007, 399, 133-152.	0.4	14

DAVID L DEITCHER

#	Article	IF	CITATIONS
37	Activity-evoked and spontaneous opening of synaptic fusion pores. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17039-17044.	3.3	14
38	Myopic (HD-PTP, PTPN23) selectively regulates synaptic neuropeptide release. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1617-1622.	3.3	13
39	Exocytosis, endocytosis, and development. Seminars in Cell and Developmental Biology, 2002, 13, 71-76.	2.3	9
40	Limited distal organelles and synaptic function in extensive monoaminergic innervation. Journal of Cell Science, 2017, 130, 2520-2529.	1.2	9
41	Loss of Huntingtin stimulates capture of retrograde dense-core vesicles to increase synaptic neuropeptide stores. European Journal of Cell Biology, 2017, 96, 402-406.	1.6	8
42	Ptp4E regulates vesicular packaging for monoamine-neuropeptide co-transmission. Journal of Cell Science, 2019, 132, .	1.2	7
43	Shibire's enhancer is cancer's suppressor. Trends in Neurosciences, 2001, 24, 625-626.	4.2	6
44	The <i>wavy</i> Mutation Maps to the <i>Inositol 1,4,5-Trisphosphate 3-Kinase 2</i> (<i>IP3K2</i>) Gene of <i>Drosophila</i> and Interacts with <i>IP3R</i> to Affect Wing Development. G3: Genes, Genomes, Genetics, 2016, 6, 299-310.	0.8	5
45	Generation of a Semi-Dominant Mutation with Temperature Sensitive Effects on Both Locomotion and Phototransduction in <i>Drosophila Melanogaster</i> . Journal of Neurogenetics, 2001, 15, 75-95.	0.6	4
46	"A fly appeared― <i>sable</i> , a classic <i>Drosophila</i> mutation, maps to <i>Yippee</i> , a gene affecting body color, wings, and bristles. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	4
47	Extending <i>julius seizure</i> , a bang-sensitive gene, as a model for studying epileptogenesis: Cold shock, and a new insertional mutation. Fly, 2018, 12, 55-61.	0.9	3
48	Sound and fury: Modulation of aggressive behavior through acoustic signals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2443-2444.	3.3	1