Hans Werner Müller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/646911/publications.pdf Version: 2024-02-01

		94433	106344
87	4,633	37	65
papers	citations	h-index	g-index
112	112	112	4711
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	AAV-mediated inhibition of ULK1 promotes axonal regeneration in the central nervous system in vitro and in vivo. Cell Death and Disease, 2021, 12, 213.	6.3	6
2	Heterogeneous fate choice of genetically modulated adult neural stem cells in gray and white matter of the central nervous system. Glia, 2020, 68, 393-406.	4.9	4
3	Secretome Analysis of Mesenchymal Stem Cell Factors Fostering Oligodendroglial Differentiation of Neural Stem Cells In Vivo. International Journal of Molecular Sciences, 2020, 21, 4350.	4.1	16
4	Functional omics analyses reveal only minor effects of microRNAs on human somatic stem cell differentiation. Scientific Reports, 2020, 10, 3284.	3.3	9
5	Micromechanical adaptation as a treatment for spinal cord injury. Neural Regeneration Research, 2019, 14, 1909.	3.0	1
6	Low-pressure micro-mechanical re-adaptation device sustainably and effectively improves locomotor recovery from complete spinal cord injury. Communications Biology, 2018, 1, 205.	4.4	3
7	Experimental Strategies to Bridge Large Tissue Gaps in the Injured Spinal Cord after Acute and Chronic Lesion. Journal of Visualized Experiments, 2016, , e53331.	0.3	13
8	HSF1-deficiency affects gait coordination and cerebellar calbindin levels. Behavioural Brain Research, 2016, 310, 103-108.	2.2	5
9	Bridging large gaps in the injured spinal cord: mechanical and biochemical tissue adaptation. Neural Regeneration Research, 2016, 11, 1572.	3.0	3
10	Pharmacological Suppression of CNS Scarring by Deferoxamine Reduces Lesion Volume and Increases Regeneration in an In Vitro Model for Astroglial-Fibrotic Scarring and in Rat Spinal Cord Injury In Vivo. PLoS ONE, 2015, 10, e0134371.	2.5	27
11	AAVâ€mediated expression of BAG1 and ROCK2â€shRNA promote neuronal survival and axonal sprouting in a rat model of rubrospinal tract injury. Journal of Neurochemistry, 2015, 134, 261-275.	3.9	11
12	Characterization of Regenerative Phenotype of Unrestricted Somatic Stem Cells (USSC) from Human Umbilical Cord Blood (hUCB) by Functional Secretome Analysis. Molecular and Cellular Proteomics, 2015, 14, 2630-2643.	3.8	32
13	Neural ECM mimetics. Progress in Brain Research, 2014, 214, 391-413.	1.4	19
14	Spinal cord injury – there is not just one way of treating it. F1000prime Reports, 2014, 6, 84.	5.9	11
15	Long-lasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation. Neurobiology of Disease, 2014, 67, 165-179.	4.4	71
16	Defeating inhibition of regeneration by scar and myelin components. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 503-522.	1.8	104
17	Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood. Brain, 2012, 135, 431-446.	7.6	95
18	Concise Review: The Potential of Stromal Cell-Derived Factor 1 and Its Receptors to Promote Stem Cell Functions in Spinal Cord Repair. Stem Cells Translational Medicine, 2012, 1, 732-739.	3.3	33

#	Article	IF	CITATIONS
19	SDF-1/CXCL12: Its role in spinal cord injury. International Journal of Biochemistry and Cell Biology, 2012, 44, 452-456.	2.8	32
20	Chemokines in CNS injury and repair. Cell and Tissue Research, 2012, 349, 229-248.	2.9	132
21	Age-Dependent Modulation of Cortical Transcriptomes in Spinal Cord Injury and Repair. PLoS ONE, 2012, 7, e49812.	2.5	16
22	MicroRNAs MiR-17, MiR-20a, and MiR-106b Act in Concert to Modulate E2F Activity on Cell Cycle Arrest during Neuronal Lineage Differentiation of USSC. PLoS ONE, 2011, 6, e16138.	2.5	114
23	Network-Like Impact of MicroRNAs on Neuronal Lineage Differentiation of Unrestricted Somatic Stem Cells from Human Cord Blood. Stem Cells and Development, 2011, 20, 1383-1394.	2.1	20
24	Assessment of Gadolinium Leakage Into Traumatic Spinal Cord Lesion Using Magnet Resonance Imaging. Spine, 2010, 35, E1604-E1609.	2.0	2
25	The α-chemokine CXCL14 is up-regulated in the sciatic nerve of a mouse model of Charcot–Marie–Tooth disease type 1A and alters myelin gene expression in cultured Schwann cells. Neurobiology of Disease, 2009, 33, 448-458.	4.4	20
26	Glucoseâ€dependent insulinotropic polypeptide (GIP) and its receptor (GIPR): Cellular localization, lesionâ€affected expression, and impaired regenerative axonal growth. Journal of Neuroscience Research, 2009, 87, 1858-1870.	2.9	38
27	Enhanced regenerative axon growth of multiple fibre populations in traumatic spinal cord injury following scarâ€suppressing treatment. European Journal of Neuroscience, 2009, 30, 1544-1553.	2.6	42
28	SDF-1 stimulates neurite growth on inhibitory CNS myelin. Molecular and Cellular Neurosciences, 2009, 40, 293-300.	2.2	66
29	Pharmacological modification of the extracellular matrix to promote regeneration of the injured brain and spinal cord. Progress in Brain Research, 2009, 175, 269-281.	1.4	37
30	Unrestricted Somatic Stem Cells from Human Umbilical Cord Blood Can be Differentiated into Neurons with a Dopaminergic Phenotype. Stem Cells and Development, 2008, 17, 221-232.	2.1	73
31	Collagen Matrix in Spinal Cord Injury. Journal of Neurotrauma, 2006, 23, 422-436.	3.4	151
32	Gene expression profiling reveals that peripheral nerve regeneration is a consequence of both novel injury-dependent and reactivated developmental processes. Journal of Neurochemistry, 2006, 96, 1441-1457.	3.9	107
33	The Collagenous Wound Healing Scar in the Injured Central Nervous System Inhibits Axonal Regeneration. , 2006, 557, 177-190.		29
34	Suppression of fibrous scarring in spinal cord injury of rat promotes long-distance regeneration of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery. European Journal of Neuroscience, 2005, 22, 3047-3058.	2.6	146
35	Evidence for macrophageâ€mediated myelin disruption in an animal model for Charcotâ€Marieâ€Tooth neuropathy type 1A. Journal of Neuroscience Research, 2005, 81, 857-864.	2.9	46
36	Gene expression profiling reveals multiple novel intrinsic and extrinsic factors associated with axonal regeneration failure. European Journal of Neuroscience, 2004, 19, 32-42.	2.6	32

Hans Werner Müller

#	Article	IF	CITATIONS
37	Peripheral myelin protein 22 kDa and protein zero: domain specific trans-interactions. Molecular and Cellular Neurosciences, 2004, 27, 370-378.	2.2	35
38	Identification and Characterization of ZFP-57, a Novel Zinc Finger Transcription Factor in the Mammalian Peripheral Nervous System. Journal of Biological Chemistry, 2004, 279, 25653-25664.	3.4	21
39	Cyclic AMP and tumor necrosis factor-α regulate CXCR4 gene expression in Schwann cells. Molecular and Cellular Neurosciences, 2003, 24, 1-9.	2.2	24
40	Dynamic Changes in Gene Expression Profiles Following Axotomy of Projection Fibres in the Mammalian CNS. Molecular and Cellular Neurosciences, 2002, 21, 421-435.	2.2	18
41	Mammalian Achaete Scute Homolog 2 Is Expressed in the Adult Sciatic Nerve and Regulates the Expression of Krox24, Mob-1, CXCR4, and p57kip2 in Schwann Cells. Journal of Neuroscience, 2002, 22, 7586-7595.	3.6	50
42	Ammoniaâ€induced heme oxygenaseâ€1 expression in cultured rat astrocytes and rat brain in vivo. Glia, 2002, 40, 324-336.	4.9	68
43	A monoclonal antibody against a neuron-specific 65-kDa protein with laminar expression in the developing cerebral cortex. Histochemistry and Cell Biology, 2002, 117, 317-325.	1.7	3
44	Transcription factors in nerve regeneration. Progress in Brain Research, 2001, 132, 569-585.	1.4	4
45	Identification of osmosensitive and ammonia-regulated genes in rat astrocytes by Northern blotting and differential display reverse transcriptase-polymerase chain reaction. Journal of Hepatology, 2001, 35, 358-366.	3.7	29
46	Preservation and detection of lesion-induced collagenous scar in the CNS depend on the method of tissue processing. Brain Research Protocols, 2001, 7, 162-167.	1.6	14
47	Molecular mechanisms of cellular interactions in peripheral nerve regeneration. Current Opinion in Neurology, 2001, 14, 635-639.	3.6	63
48	A reliable method to reduce collagen scar formation in the lesioned rat spinal cord. Journal of Neuroscience Methods, 2001, 110, 141-146.	2.5	71
49	Plasmolipin: genomic structure, chromosomal localization, protein expression pattern, and putative association with Bardet-Biedl syndrome. Mammalian Genome, 2001, 12, 933-937.	2.2	20
50	Chondroitin sulfates expressed on oligodendrocyte-derived tenascin-R are involved in neural cell recognition. Functional implications during CNS development and regeneration. , 2000, 60, 21-36.		33
51	Long-term culture and characterization of human neurofibroma-derived Schwann cells. Journal of Neuroscience Research, 2000, 61, 524-532.	2.9	46
52	Cloning and characterization of SDF-1 ^{î3} , a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous system. European Journal of Neuroscience, 2000, 12, 1857-1866.	2.6	125
53	Peripheral Myelin Protein 22 and Protein Zero: a Novel Association in Peripheral Nervous System Myelin. Journal of Neuroscience, 1999, 19, 3396-3403.	3.6	143
54	Rho-dependent Regulation of Cell Spreading by the Tetraspan Membrane Protein Gas3/PMP22. Molecular Biology of the Cell, 1999, 10, 2441-2459.	2.1	69

#	Article	IF	CITATIONS
55	Inhibition of collagen IV deposition promotes regeneration of injured CNS axons. European Journal of Neuroscience, 1999, 11, 632-646.	2.6	153
56	Effects of Schwann cell suspension grafts on axon regeneration in subacute and chronic CNS traumatic injuries. , 1999, 28, 156-165.		10
57	Nerve Injury, Axonal Degeneration and Neural Regeneration: Basic Insights. Brain Pathology, 1999, 9, 313-325.	4.1	474
58	Genetik neurologischer Erbkrankheiten — eine Übersicht. , 1999, , 321-344.		0
59	Scar modulation in subacute and chronic CNS lesions: Effects on axonal regeneration. Restorative Neurology and Neuroscience, 1999, 15, 1-15.	0.7	13
60	Developmental regulation of decorin expression in postnatal rat brain. Brain Research, 1998, 793, 328-332.	2.2	19
61	Improved culture methods to expand schwann cells with altered growth behaviour from CMT1A patients. , 1998, 23, 89-98.		48
62	The CNS lesion scar: new vistas on an old regeneration barrier. Cell and Tissue Research, 1998, 294, 1-9.	2.9	223
63	Experimental strategies to promote axonal regeneration after traumatic central nervous system injury. Progress in Neurobiology, 1998, 56, 119-148.	5.7	131
64	Pathogenesis of Charcot–Marie–Tooth 1A (CMT1A) neuropathy. Trends in Neurosciences, 1998, 21, 282-286.	8.6	63
65	Overloaded Endoplasmic Reticulum–Golgi Compartments, a Possible Pathomechanism of Peripheral Neuropathies Caused by Mutations of the Peripheral Myelin Protein PMP22. Journal of Neuroscience, 1998, 18, 731-740.	3.6	118
66	Nerve injury and regeneration: basic insights and therapeutic interventions. Current Opinion in Neurology, 1998, 11, 557-562.	3.6	48
67	â– REVIEW : Gene Expression in Nerve Regeneration. Neuroscientist, 1997, 3, 112-122.	3.5	48
68	Chondroitin/Dermatan Sulphate Promotes the Survival of Neurons from Rat Embryonic Neocortex. European Journal of Neuroscience, 1997, 9, 306-318.	2.6	46
69	Studies on the effects of altered PMP22 expression during myelination in vitro. , 1997, 48, 31-42.		39
70	Ins and outs of peripheral myelin protein-22: Mapping transmembrane topology and intracellular sorting. , 1997, 49, 551-562.		37
71	Schwann Cell Suspension Grafts Promote Reconstruction of Transected Postcommissural Fornix in the Adult Rat. , 1997, , 357-366.		2
72	Cultured astrocytes express biglycan, a chondroitin/dermatan sulfate proteoglycan supporting the survival of neocortical neurons. Molecular Brain Research, 1996, 41, 65-73.	2.3	40

Hans Werner Müller

#	Article	IF	CITATIONS
73	Reconstruction of Transected Postcommissural Fornix in Adult Rat by Schwann Cell Suspension Grafts. Experimental Neurology, 1996, 140, 21-36.	4.1	28
74	Clearance of Myelin Constituents and Axonal Sprouting in the Transected Postcommissural Fornix of the Adult Rat. European Journal of Neuroscience, 1995, 7, 401-411.	2.6	31
75	Purification of a Meningeal Cell-derived Chondroitin Sulphate Proteoglycan with Neurotrophic Activity for Brain Neurons and its Identification as Biglycan. European Journal of Neuroscience, 1995, 7, 2341-2350.	2.6	48
76	Spontaneous activity and recurrent inhibition in cultured hippocampal networks. Synapse, 1993, 14, 206-213.	1.2	41
77	Paroxysmal long-lasting depolarizations in cultured hippocampal neurons are generated by activation of NMDA and non-NMDA receptors. Synapse, 1993, 14, 214-220.	1.2	4
78	Astroglia—Neuron interactions that promote long-term neuronal survival. Journal of Chemical Neuroanatomy, 1993, 6, 229-237.	2.1	52
79	Expression of inherent neuronal shape characteristics after transient sensitivity to epigenetic factors. Developmental Brain Research, 1992, 68, 149-162.	1.7	27
80	Dissociated cell culture of rat cerebral cortical neurons in serum-free, conditioned media: GABA-immunopositive neurons. Developmental Brain Research, 1991, 64, 145-154.	1.7	35
81	Identification of Meningeal Cell Released Neurite Promoting Activities for Embryonic Hippocampal Neurons. Journal of Neurochemistry, 1991, 56, 759-768.	3.9	28
82	Electrophysiological properties of rat septal region neurons during development in culture. Brain Research, 1990, 509, 85-90.	2.2	12
83	Oligodendrocytes but not astrocytes express apolipoprotein E after injury of rat optic nerve. Glia, 1989, 2, 170-176.	4.9	70
84	Astroglia-released neurite growth-inducing activity for embryonic hippocampal neurons is associated with laminin bound in a sulfated complex and free fibronectin. Glia, 1989, 2, 177-188.	4.9	87
85	Neurotrophic and Neurite Promoting Activities in Astroglial Conditioned Medium. , 1987, , 385-406.		7
86	Macrophages in the peripheral nervous system and astroglia in the central nervous system of rat commonly express apolipoprotein E during development but differ in their response to injury. Neuroscience Letters, 1986, 72, 233-238.	2.1	109
87	A neurotrophic factor (NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons. Journal of Neuroscience Research, 1982, 8, 195-204.	2.9	137