Ursula Fillat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6468844/publications.pdf

Version: 2024-02-01

28 879 18 28 papers citations h-index g-index

28 28 28 1218
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Laccases as a Potential Tool for the Efficient Conversion of Lignocellulosic Biomass: A Review. Fermentation, 2017, 3, 17.	3.0	85
2	Assessing cellulose nanofiber production from olive tree pruning residue. Carbohydrate Polymers, 2018, 179, 252-261.	10.2	80
3	Optical constants of Cu2ZnGeS4 bulk crystals. Journal of Applied Physics, 2010, 108, .	2.5	60
4	Evaluating Lignin-Rich Residues from Biochemical Ethanol Production of Wheat Straw and Olive Tree Pruning by FTIR and 2D-NMR. International Journal of Polymer Science, 2015, 2015, 1-11.	2.7	58
5	Characterization of lignins from Populus alba L. generated as by-products in different transformation processes: Kraft pulping, organosolv and acid hydrolysis. International Journal of Biological Macromolecules, 2019, 126, 18-29.	7.5	54
6	Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1561-1573.	3.0	50
7	Biobleaching of high quality pulps with laccase mediator system: Influence of treatment time and oxygen supply. Biochemical Engineering Journal, 2009, 44, 193-198.	3.6	48
8	Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: Bioethanol production and alkaline pulping. International Journal of Biological Macromolecules, 2017, 105, 238-251.	7.5	46
9	Screening of eucalyptus wood endophytes for laccase activity. Process Biochemistry, 2016, 51, 589-598.	3.7	44
10	Optimization of laccase–mediator system in producing biobleached flax pulp. Bioresource Technology, 2010, 101, 181-187.	9.6	43
11	Use of new endophytic fungi as pretreatment to enhance enzymatic saccharification of Eucalyptus globulus. Bioresource Technology, 2015, 196, 383-390.	9.6	43
12	Biodeinking of flexographic inks by fungal laccases using synthetic and natural mediators. Biochemical Engineering Journal, 2012, 67, 97-103.	3 . 6	41
13	Valorization of Soda Lignin from Wheat Straw Solid-State Fermentation: Production of Oleogels. ACS Sustainable Chemistry and Engineering, 2018, 6, 5198-5205.	6.7	32
14	Effect of process parameters in laccase-mediator system delignification of flax pulp. Chemical Engineering Journal, 2009, 152, 322-329.	12.7	31
15	Biorefinery of Lignocellulosic Biomass from an Elm Clone: Production of Fermentable Sugars and Ligninâ€Derived Biochar for Energy and Environmental Applications. Energy Technology, 2019, 7, 277-287.	3.8	24
16	Effect of process parameters in laccase mediator system delignification of flax pulp. Part II: Impact on effluents properties. Chemical Engineering Journal, 2009, 152, 330-338.	12.7	20
17	Towards the improvement of Eucalyptus globulus chemical and mechanical pulping using endophytic fungi. International Biodeterioration and Biodegradation, 2015, 105, 120-126.	3.9	18
18	Lignin-enriched Fermentation Residues from Bioethanol Production of Fast-growing Poplar and Forage Sorghum. BioResources, 2015, 10, .	1.0	18

#	Article	IF	CITATION
19	Assessing enzymatic deinking for secondary fibers paper recycling in the presence of flexographic inks. Chemical Engineering Journal, 2015, 260, 486-491.	12.7	13
20	Integrating a Xylanase Treatment into an Industrial-Type Sequence for Eucalyptus Kraft Pulp Bleaching. Industrial & Engineering Chemistry Research, 2012, 51, 2830-2837.	3.7	12
21	Endophytic Fungi as Pretreatment to Enhance Enzymatic Hydrolysis of Olive Tree Pruning. BioMed Research International, 2017, 2017, 1-10.	1.9	12
22	Flax fibers as a raw material: How to bleach efficiently a non-woody plant to obtain high-quality pulp. Biomass and Bioenergy, 2010, 34, 1896-1905.	5.7	11
23	An Approach to Industrial Application: Influence of Black Liquor and pH on Xylanase Efficiency in Bleaching of Eucalyptus Kraft Pulp. Industrial & Engineering Chemistry Research, 2010, 49, 11200-11205.	3.7	9
24	Production of Microfibrillated Cellulose from Fast-Growing Poplar and Olive Tree Pruning by Physical Pretreatment. Applied Sciences (Switzerland), 2021, 11, 6445.	2.5	9
25	Chemical Modification by Impregnation of Poplar Wood with Functional Composite Modifier. BioResources, 2015, 10, .	1.0	6
26	Potential of the new endophytic fungusHormonemasp. CECT-13092 for improving processes in lignocellulosic biorefineries: biofuel production and cellulosic pulp manufacture. Journal of Chemical Technology and Biotechnology, 2017, 92, 997-1005.	3.2	6
27	Potential of Lignin-Degrading Endophytic Fungi on Lignocellulosic Biorefineries. Sustainable Development and Biodiversity, 2017, , 261-281.	1.7	4
28	Effect of commercial xylanases applied at extreme conditions in a eucalyptus pulp mill. Tappi Journal, 2012, 11, 53-59.	0.5	2