Shovon Mandal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6468728/publications.pdf Version: 2024-02-01

		687220	752573
21	1,137	13	20
papers	citations	h-index	g-index
21	21	21	1539
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 2009, 84, 281-291.	1.7	450
2	Industrialâ€strength ecology: tradeâ€offs and opportunities in algal biofuel production. Ecology Letters, 2013, 16, 1393-1404.	3.0	155
3	Green microalga <i>Chlorella vulgaris</i> as a potential feedstock for biodiesel. Journal of Chemical Technology and Biotechnology, 2012, 87, 137-145.	1.6	97
4	Waste Utilization and Biodiesel Production by the Green Microalga <i>Scenedesmus obliquus</i> . Applied and Environmental Microbiology, 2011, 77, 374-377.	1.4	68
5	Assessing the potential of polyculture to accelerate algal biofuel production. Algal Research, 2016, 19, 264-277.	2.4	58
6	Evaluation of phenotype stability and ecological risk of a genetically engineered alga in open pond production. Algal Research, 2017, 24, 378-386.	2.4	56
7	Trait diversity enhances yield in algal biofuel assemblages. Journal of Applied Ecology, 2014, 51, 603-611.	1.9	48
8	Comparative assessment of various lipid extraction protocols and optimization of transesterification process for microalgal biodiesel production. Environmental Technology (United Kingdom), 2013, 34, 2009-2018.	1.2	41
9	Biodiesel Production by the Green Microalga Scenedesmus obliquus in a Recirculatory Aquaculture System. Applied and Environmental Microbiology, 2012, 78, 5929-5934.	1.4	32
10	Functional divergence in nitrogen uptake rates explains diversity–productivity relationship in microalgal communities. Ecosphere, 2018, 9, e02228.	1.0	24
11	Better management practices for environmentally sustainable production of microalgae and algal biofuels. Journal of Cleaner Production, 2021, 289, 125150.	4.6	22
12	Heterogeneity in Nitrogen Sources Enhances Productivity and Nutrient Use Efficiency in Algal Polycultures. Environmental Science & Technology, 2018, 52, 3769-3776.	4.6	17
13	Deep data analytics for genetic engineering of diatoms linking genotype to phenotype via machine learning. Npj Computational Materials, 2019, 5, .	3.5	16
14	Compensatory grazing by Daphnia generates a tradeâ€off between topâ€down and bottomâ€up effects across phytoplankton taxa. Ecosphere, 2018, 9, e02537.	1.0	9
15	Integration of Algal Biofuels With Bioremediation Coupled Industrial Commodities Towards Cost-Effectiveness. Frontiers in Energy Research, 2021, 9, .	1.2	9
16	Exploring the sustainability and sealing mechanisms of unlined ponds for growing algae for fuel and other commodity-scale products. Renewable and Sustainable Energy Reviews, 2020, 121, 109708.	8.2	8
17	Bioprospecting Indigenous Marine Microalgae for Polyunsaturated Fatty Acids Under Different Media Conditions. Frontiers in Bioengineering and Biotechnology, 2022, 10, 842797.	2.0	8
18	Comparing Trace Element Bioaccumulation and Depuration in Snails and Mayfly Nymphs at a Coal Ash–Contaminated Site. Environmental Toxicology and Chemistry. 2020. 39, 2437-2449.	2.2	6

#	Article	IF	CITATIONS
19	Soil sealing by algae: An alternative to plastic pond liners for outdoor algal cultivation. Algal Research, 2019, 38, 101414.	2.4	5
20	Microalgae. , 2014, , 171-184.		4
21	A novel approach to build algal consortia for sustainable biomass production. Algal Research, 2022, 65, 102734.	2.4	4