List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6468589/publications.pdf Version: 2024-02-01

		117571	155592
111	3,929	34	55
papers	citations	h-index	g-index
			0700
111	111	111	3790
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microbial Cell Factories, 2020, 19, 23.	1.9	201
2	Lactic Acid Bacteria as Antifungal and Antiâ€Mycotoxigenic Agents: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1403-1436.	5.9	172
3	Protective Effects of Lactobacillus plantarum CCFM8610 against Acute Cadmium Toxicity in Mice. Applied and Environmental Microbiology, 2013, 79, 1508-1515.	1.4	170
4	Oral Administration of Probiotics Inhibits Absorption of the Heavy Metal Cadmium by Protecting the Intestinal Barrier. Applied and Environmental Microbiology, 2016, 82, 4429-4440.	1.4	157
5	Screening for potential new probiotic based on probiotic properties and α-glucosidase inhibitory activity. Food Control, 2014, 35, 65-72.	2.8	145
6	Protective Effects of Lactobacillus plantarum CCFM8610 against Chronic Cadmium Toxicity in Mice Indicate Routes of Protection besides Intestinal Sequestration. Applied and Environmental Microbiology, 2014, 80, 4063-4071.	1.4	123
7	Gut microbiota: A target for heavy metal toxicity and a probiotic protective strategy. Science of the Total Environment, 2020, 742, 140429.	3.9	112
8	Lactobacillus plantarum CCFM8661 Alleviates Lead Toxicity in Mice. Biological Trace Element Research, 2012, 150, 264-271.	1.9	110
9	Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. Food Control, 2015, 54, 23-30.	2.8	109
10	Effects of Dietary Selenium Supplementation on Intestinal Barrier and Immune Responses Associated with Its Modulation of Gut Microbiota. Environmental Science and Technology Letters, 2018, 5, 724-730.	3.9	90
11	Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota. Microbiological Research, 2020, 233, 126409.	2.5	82
12	Antidiabetic effect of Lactobacillus casei CCFM0412 on mice with type 2 diabetes induced by a high-fat diet and streptozotocin. Nutrition, 2014, 30, 1061-1068.	1.1	78
13	<i>Lactobacillus plantarum</i> CCFM10 alleviating oxidative stress and restoring the gut microbiota in <scp>d</scp> -galactose-induced aging mice. Food and Function, 2018, 9, 917-924.	2.1	69
14	Meta-analysis of randomized controlled trials of the effects of probiotics on functional constipation in adults. Clinical Nutrition, 2020, 39, 2960-2969.	2.3	69
15	Microencapsulation of <i>Bifidobacterium bifidum</i> Fâ€35 in reinforced alginate microspheres prepared by emulsification/internal gelation. International Journal of Food Science and Technology, 2011, 46, 1672-1678.	1.3	66
16	<i>Lactobacillus plantarum</i> CCFM8661 modulates bile acid enterohepatic circulation and increases lead excretion in mice. Food and Function, 2019, 10, 1455-1464.	2.1	58
17	Selection of Taste Markers Related to Lactic Acid Bacteria Microflora Metabolism for Chinese Traditional Paocai: A Gas Chromatography–Mass Spectrometry-Based Metabolomics Approach. Journal of Agricultural and Food Chemistry, 2016, 64, 2415-2422.	2.4	57
18	Antibiotic-induced gut dysbiosis and barrier disruption and the potential protective strategies. Critical Reviews in Food Science and Nutrition, 2022, 62, 1427-1452.	5.4	56

#	Article	IF	CITATIONS
19	Identification of key proteins and pathways in cadmium tolerance of Lactobacillus plantarum strains by proteomic analysis. Scientific Reports, 2017, 7, 1182.	1.6	54
20	Protective effects of different Bacteroides vulgatus strains against lipopolysaccharide-induced acute intestinal injury, and their underlying functional genes. Journal of Advanced Research, 2022, 36, 27-37.	4.4	53
21	Multiple roles of lactic acid bacteria microflora in the formation of marker flavour compounds in traditional chinese paocai. RSC Advances, 2016, 6, 89671-89678.	1.7	52
22	Postharvest control of Penicillium expansum in fruits: A review. Food Bioscience, 2020, 36, 100633.	2.0	51
23	Oligosaccharides as co-encapsulating agents: effect on oral Lactobacillus fermentum survival in a simulated gastrointestinal tract. Biotechnology Letters, 2019, 41, 263-272.	1.1	49
24	Lactobacillus rhamnosus CCFM1107 treatment ameliorates alcohol-induced liver injury in a mouse model of chronic alcohol feeding. Journal of Microbiology, 2015, 53, 856-863.	1.3	48
25	Progress in the distribution, toxicity, control, and detoxification of patulin: A review. Toxicon, 2020, 184, 83-93.	0.8	48
26	Role of dietary edible mushrooms in the modulation of gut microbiota. Journal of Functional Foods, 2021, 83, 104538.	1.6	48
27	Dietary Lactobacillus plantarum supplementation enhances growth performance and alleviates aluminum toxicity in tilapia. Ecotoxicology and Environmental Safety, 2017, 143, 307-314.	2.9	47
28	Dietary <i>Lactobacillus plantarum</i> supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (<i>Oreochromis niloticus</i>). Aquaculture Research, 2017, 48, 5094-5103.	0.9	46
29	Oral Supplementation of Lead-Intolerant Intestinal Microbes Protects Against Lead (Pb) Toxicity in Mice. Frontiers in Microbiology, 2019, 10, 3161.	1.5	44
30	Dietary supplementation with probiotics regulates gut microbiota structure and function in Nile tilapia exposed to aluminum. PeerJ, 2019, 7, e6963.	0.9	42
31	Increased Cadmium Excretion Due to Oral Administration of <i>Lactobacillus plantarum</i> Strains by Regulating Enterohepatic Circulation in Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 3956-3965.	2.4	41
32	Modulation of the gut microbiota by a galactooligosaccharide protects against heavy metal lead accumulation in mice. Food and Function, 2019, 10, 3768-3781.	2.1	38
33	Screening of Lactobacillus salivarius strains from the feces of Chinese populations and the evaluation of their effects against intestinal inflammation in mice. Food and Function, 2020, 11, 221-235.	2.1	38
34	Identification of the key physiological characteristics of <i>Lactobacillus plantarum</i> strains for ulcerative colitis alleviation. Food and Function, 2020, 11, 1279-1291.	2.1	38
35	Protective Effects of Lactobacillus plantarum CCFM8246 against Copper Toxicity in Mice. PLoS ONE, 2015, 10, e0143318.	1.1	37
36	Immunomodulatory Effects of Different Lactic Acid Bacteria on Allergic Response and Its Relationship with In Vitro Properties. PLoS ONE, 2016, 11, e0164697.	1.1	37

#	Article	IF	CITATIONS
37	Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress. Nutrients, 2016, 8, 783.	1.7	35
38	The cadmium binding characteristics of a lactic acid bacterium in aqueous solutions and its application for removal of cadmium from fruit and vegetable juices. RSC Advances, 2016, 6, 5990-5998.	1.7	34
39	The binding characters study of lead removal by Lactobacillus plantarum CCFM8661. European Food Research and Technology, 2016, 242, 1621-1629.	1.6	33
40	Genetically Engineered Lactococcus lactis Protect against House Dust Mite Allergy in a BALB/c Mouse Model. PLoS ONE, 2014, 9, e109461.	1.1	32
41	Lactobacillus plantarum CCFM639 Alleviate Trace Element Imbalance-Related Oxidative Stress in Liver and Kidney of Chronic Aluminum Exposure Mice. Biological Trace Element Research, 2017, 176, 342-349.	1.9	31
42	Protective Effects of Dietary Supplements Containing Probiotics, Micronutrients, and Plant Extracts Against Lead Toxicity in Mice. Frontiers in Microbiology, 2018, 9, 2134.	1.5	31
43	Food-borne patulin toxicity is related to gut barrier disruption and can be prevented by docosahexaenoic acid and probiotic supplementation. Food and Function, 2019, 10, 1330-1339.	2.1	30
44	The characteristics of patulin detoxification by Lactobacillus plantarum 13M5. Food and Chemical Toxicology, 2020, 146, 111787.	1.8	30
45	Effects of Probiotic Supplementation on Dyslipidemia in Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Foods, 2020, 9, 1540.	1.9	30
46	Molecular characteristics of an exopolysaccharide from Lactobacillus rhamnosus KF5 in solution. International Journal of Biological Macromolecules, 2015, 72, 1429-1434.	3.6	29
47	Efficacy of probiotics in multiple sclerosis: a systematic review of preclinical trials and meta-analysis of randomized controlled trials. Food and Function, 2021, 12, 2354-2377.	2.1	29
48	Varied doses and chemical forms of selenium supplementation differentially affect mouse intestinal physiology. Food and Function, 2019, 10, 5398-5412.	2.1	27
49	Akkermansia muciniphila Exerts Strain-Specific Effects on DSS-Induced Ulcerative Colitis in Mice. Frontiers in Cellular and Infection Microbiology, 2021, 11, 698914.	1.8	27
50	Dose-dependent effects of lead induced gut injuries: An inÂvitro and inÂvivo study. Chemosphere, 2021, 266, 129130.	4.2	25
51	Lactobacillus plantarum CCFM639 alleviates aluminium toxicity. Applied Microbiology and Biotechnology, 2016, 100, 1891-1900.	1.7	24
52	Latilactobacillus curvatus: A Candidate Probiotic with Excellent Fermentation Properties and Health Benefits. Foods, 2020, 9, 1366.	1.9	24
53	Meta-analysis of randomized controlled trials of the effects of probiotics on type 2 diabetes in adults. Clinical Nutrition, 2022, 41, 365-373.	2.3	24
54	Identification of the key characteristics of <i>Bifidobacterium longum</i> strains for the alleviation of ulcerative colitis. Food and Function, 2021, 12, 3476-3492.	2.1	23

#	Article	IF	CITATIONS
55	The effects of diet and gut microbiota on the regulation of intestinal mucin glycosylation. Carbohydrate Polymers, 2021, 258, 117651.	5.1	23
56	The Composition and Concordance of Lactobacillus Populations of Infant Gut and the Corresponding Breast-Milk and Maternal Gut. Frontiers in Microbiology, 2020, 11, 597911.	1.5	22
57	Human gut-derived B. longum subsp. longum strains protect against aging in a d-galactose-induced aging mouse model. Microbiome, 2021, 9, 180.	4.9	22
58	The roles of different <i>Bacteroides fragilis</i> strains in protecting against DSS-induced ulcerative colitis and related functional genes. Food and Function, 2021, 12, 8300-8313.	2.1	21
59	New insights in integrated response mechanism of Lactobacillus plantarum under excessive manganese stress. Food Research International, 2017, 102, 323-332.	2.9	20
60	Lactobacillus plantarum CCFM8610 Alleviates Irritable Bowel Syndrome and Prevents Gut Microbiota Dysbiosis: A Randomized, Double-Blind, Placebo-Controlled, Pilot Clinical Trial. Engineering, 2021, 7, 376-385.	3.2	20
61	Lactobacillus plantarum-Mediated Regulation of Dietary Aluminum Induces Changes in the Human Gut Microbiota: an In Vitro Colonic Fermentation Study. Probiotics and Antimicrobial Proteins, 2021, 13, 398-412.	1.9	19
62	Protective effects of lactic acid bacteria-fermented soymilk against chronic cadmium toxicity in mice. RSC Advances, 2015, 5, 4648-4658.	1.7	18
63	Composition and antioxidant and antimicrobial activities of white apricot almond (Amygdalus) Tj ETQq1	l 0.784314 rgBT 1.0	/Overlock 10
64	Metabolomics analysis reveals heavy metal copper-induced cytotoxicity in HT-29 human colon cancer cells. RSC Advances, 2016, 6, 78445-78456.	1.7	17
65	The therapeutic protection of a living and dead Lactobacillus strain against aluminum-induced brain and liver injuries in C57BL/6 mice. PLoS ONE, 2017, 12, e0175398.	1.1	16
66	The synergistic effect of <i>Lactobacillus plantarum</i> CCFM242 and zinc on ulcerative colitis through modulating intestinal homeostasis. Food and Function, 2019, 10, 6147-6156.	2.1	16
67	Pediococcus acidilactici Strains Improve Constipation Symptoms and Regulate Intestinal Flora in Mice. Frontiers in Cellular and Infection Microbiology, 2021, 11, 655258.	1.8	16
68	Behavioral disorders caused by nonylphenol and strategies for protection. Chemosphere, 2021, 275, 129973.	4.2	16
69	Protective effects of <i>Bacteroides fragilis</i> against lipopolysaccharide-induced systemic inflammation and their potential functional genes. Food and Function, 2022, 13, 1015-1025.	2.1	16
70	Dietary Patterns and Gut Microbiota: The Crucial Actors in Inflammatory Bowel Disease. Advances in Nutrition, 2022, 13, 1628-1651.	2.9	16
71	A comparison of the inhibitory activities of <i>Lactobacillus</i> and <i>Bifidobacterium</i> against <i>Penicillium expansum</i> and an analysis of potential antifungal metabolites. FEMS Microbiology Letters, 2020, 367, .	0.7	15
72	Evaluation of indigenous lactic acid bacteria of raw mare milk from pastoral areas in Xinjiang, China, for potential use in probiotic fermented dairy products. Journal of Dairy Science, 2021, 104, 5166-5184.	1.4	15

#	Article	IF	CITATIONS
73	Association and Occurrence of Bifidobacterial Phylotypes Between Breast Milk and Fecal Microbiomes in Mother–Infant Dyads During the First 2 Years of Life. Frontiers in Microbiology, 2021, 12, 669442.	1.5	15
74	Lactobacillus plantarum CCFM639 can prevent aluminium-induced neural injuries and abnormal behaviour in mice. Journal of Functional Foods, 2017, 30, 142-150.	1.6	14
75	Physiological Characteristics of Lactobacillus casei Strains and Their Alleviation Effects against Inflammatory Bowel Disease. Journal of Microbiology and Biotechnology, 2021, 31, 92-103.	0.9	14
76	Systematic understanding of the potential manganese-adsorption components of a screened Lactobacillus plantarum CCFM436. RSC Advances, 2016, 6, 102804-102813.	1.7	13
77	Effects of acute oral lead exposure on the levels of essential elements of mice: a metallomics and dose-dependent study. Journal of Trace Elements in Medicine and Biology, 2020, 62, 126624.	1.5	13
78	The Protection of Lactiplantibacillus plantarum CCFM8661 Against Benzopyrene-Induced Toxicity via Regulation of the Gut Microbiota. Frontiers in Immunology, 2021, 12, 736129.	2.2	13
79	Evidence from comparative genomic analyses indicating that Lactobacillus-mediated irritable bowel syndrome alleviation is mediated by conjugated linoleic acid synthesis. Food and Function, 2021, 12, 1121-1134.	2.1	13
80	Effects of Bacteroides-Based Microecologics against Antibiotic-Associated Diarrhea in Mice. Microorganisms, 2021, 9, 2492.	1.6	13
81	<i>Ganoderma applanatum</i> polysaccharides and ethanol extracts promote the recovery of colitis through intestinal barrier protection and gut microbiota modulations. Food and Function, 2022, 13, 688-701.	2.1	13
82	System-wide analysis of manganese starvation-induced metabolism in key elements of Lactobacillus plantarum. RSC Advances, 2017, 7, 12959-12968.	1.7	12
83	Antifungal Activity of <i>Lactobacillus plantarum</i> Against <i>Penicillium roqueforti</i> in Vitro and the Preservation Effect on Chinese Steamed Bread. Journal of Food Processing and Preservation, 2017, 41, e12969.	0.9	12
84	Exopolysaccharides produced by Pediococcus acidilactici MT41-11 isolated from camel milk: Structural characteristics and bioactive properties. International Journal of Biological Macromolecules, 2021, 185, 1036-1049.	3.6	12
85	Effects of probiotic administration on hepatic antioxidative parameters depending on oxidative stress models: A meta-analysis of animal experiments. Journal of Functional Foods, 2020, 71, 103936.	1.6	12
86	Metabolomic analysis reveals the mechanism of aluminum cytotoxicity in HT-29 cells. PeerJ, 2019, 7, e7524.	0.9	12
87	Complete genome sequence of Lactobacillus plantarum ZS2058, a probiotic strain with high conjugated linoleic acid production ability. Journal of Biotechnology, 2015, 214, 212-213.	1.9	11
88	Antimicrobial activities and in vitro properties of cold-adapted Lactobacillus strains isolated from the intestinal tract of cold water fishes of high latitude water areas in Xinjiang, China. BMC Microbiology, 2019, 19, 247.	1.3	11
89	Protective Effects of Lactobacillus plantarum CCFM8610 against Acute Toxicity Caused by Different Food-Derived Forms of Cadmium in Mice. International Journal of Molecular Sciences, 2021, 22, 11045.	1.8	11
90	Dose-dependent effects of chronic lead toxicity in vivo: Focusing on trace elements and gut microbiota. Chemosphere, 2022, 301, 134670.	4.2	11

#	Article	IF	CITATIONS
91	A new method for evaluating the bioaccessibility of different foodborne forms of cadmium. Toxicology Letters, 2020, 319, 31-39.	0.4	10
92	Relief of Cadmium-Induced Intestinal Motility Disorder in Mice by Lactobacillus plantarum CCFM8610. Frontiers in Immunology, 2020, 11, 619574.	2.2	10
93	Niche-Specific Adaptive Evolution of Lactobacillus plantarum Strains Isolated From Human Feces and Paocai. Frontiers in Cellular and Infection Microbiology, 2020, 10, 615876.	1.8	10
94	Integrated Phenotypic–Genotypic Analysis of LatilactobacillusÂsakei from Different Niches. Foods, 2021, 10, 1717.	1.9	10
95	Mucosal delivery of allergen peptides expressed by Lactococcus lactis inhibit allergic responses in a BALB/c mouse model. Applied Microbiology and Biotechnology, 2016, 100, 1915-1924.	1.7	9
96	Lead-induced gut injuries and the dietary protective strategies: A review. Journal of Functional Foods, 2021, 83, 104528.	1.6	9
97	A. muciniphila Supplementation in Mice during Pregnancy and Lactation Affects the Maternal Intestinal Microenvironment. Nutrients, 2022, 14, 390.	1.7	9
98	Protective effects of a cocktail of lactic acid bacteria on microcystin-LR-induced hepatotoxicity and oxidative damage in BALB/c mice. RSC Advances, 2017, 7, 20480-20487.	1.7	7
99	Comparative Genomic Analysis Determines the Functional Genes Related to Bile Salt Resistance in Lactobacillus salivarius. Microorganisms, 2021, 9, 2038.	1.6	7
100	Transcriptome and Proteome Expression Analysis of the Metabolism of Amino Acids by the FungusAspergillus oryzaein Fermented Soy Sauce. BioMed Research International, 2015, 2015, 1-6.	0.9	6
101	Enhancement of ester formation in Camembert cheese by addition of ethanol. International Journal of Dairy Technology, 2017, 70, 220-227.	1.3	6
102	Synergistic Protective Effects of Different Dietary Supplements Against Type 2 Diabetes via Regulating Gut Microbiota. Journal of Medicinal Food, 2021, 24, 319-330.	0.8	6
103	Phocaeicola faecalis sp. nov., a strictly anaerobic bacterial strain adapted to the human gut ecosystem. Antonie Van Leeuwenhoek, 2021, 114, 1225-1235.	0.7	6
104	Evaluation of Antioxidative Effects of Lactobacillus plantarum with Fuzzy Synthetic Models. Journal of Microbiology and Biotechnology, 2018, 28, 1052-1060.	0.9	6
105	Cloning, expression, and identification of a novel class IIa bacteriocin in the Escherichia coli cell-free protein expression system. Biotechnology Letters, 2012, 34, 359-364.	1.1	4
106	An optimized culture medium to isolate <i>Lactobacillus fermentum</i> strains from the human intestinal tract. Food and Function, 2021, 12, 6740-6754.	2.1	4
107	Characteristics of an In Vitro Mesenteric Lymph Node Cell Suspension Model and Its Possible Association with In Vivo Functional Evaluation. International Journal of Molecular Sciences, 2022, 23, 1003.	1.8	3
108	Genotyping and plant-derived glycan utilization analysis of Bifidobacterium strains from mother-infant pairs. BMC Microbiology, 2020, 20, 277.	1.3	2

#	Article	IF	CITATIONS
109	Ethnic Specificity of Species and Strain Composition of Lactobacillus Populations From Mother–Infant Pairs, Uncovered by Multilocus Sequence Typing. Frontiers in Microbiology, 2022, 13, 814284.	1.5	1
110	Novel Thermostable Heparinase Based on the Genome of Bacteroides Isolated from Human Gut Microbiota. Foods, 2022, 11, 1462.	1.9	1
111	A screening model for probiotics against specific metabolic diseases based on caco-2 monolayer membrane. Engineering, 2022, , .	3.2	Ο