Irene Rosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/646846/publications.pdf Version: 2024-02-01

IDENE ROSA

#	Article	IF	CITATIONS
1	Endothelial-to-mesenchymal transition contributes to endothelial dysfunction and dermal fibrosis in systemic sclerosis. Annals of the Rheumatic Diseases, 2017, 76, 924-934.	0.9	184
2	Evidence for progressive reduction and loss of telocytes in the dermal cellular network of systemic sclerosis. Journal of Cellular and Molecular Medicine, 2013, 17, 482-496.	3.6	134
3	Telocytes in Crohn's disease. Journal of Cellular and Molecular Medicine, 2013, 17, 1525-1536.	3.6	97
4	Telocytes are reduced during fibrotic remodelling of the colonic wall in ulcerative colitis. Journal of Cellular and Molecular Medicine, 2015, 19, 62-73.	3.6	94
5	A loss of telocytes accompanies fibrosis of multiple organs in systemic sclerosis. Journal of Cellular and Molecular Medicine, 2014, 18, 253-262.	3.6	93
6	Inactivation of urokinase-type plasminogen activator receptor (uPAR) gene induces dermal and pulmonary fibrosis and peripheral microvasculopathy in mice: a new model of experimental scleroderma?. Annals of the Rheumatic Diseases, 2014, 73, 1700-1709.	0.9	72
7	Targeting anticoagulant protein S to improve hemostasis in hemophilia. Blood, 2018, 131, 1360-1371.	1.4	57
8	Reappraising the microscopic anatomy of human testis: identification of telocyte networks in the peritubular and intertubular stromal space. Scientific Reports, 2018, 8, 14780.	3.3	56
9	Telocytes in minor salivary glands of primary Sjögren's syndrome: association with the extent of inflammation and ectopic lymphoid neogenesis. Journal of Cellular and Molecular Medicine, 2015, 19, 1689-1696.	3.6	49
10	Telocyte implications in human pathology: An overview. Seminars in Cell and Developmental Biology, 2016, 55, 62-69.	5.0	48
11	Angiotensin II type 2 receptor (AT2R) as a novel modulator of inflammation in rheumatoid arthritis synovium. Scientific Reports, 2017, 7, 13293.	3.3	41
12	Decreased expression of neuropilin-1 as a novel key factor contributing to peripheral microvasculopathy and defective angiogenesis in systemic sclerosis. Annals of the Rheumatic Diseases, 2016, 75, 1541-1549.	0.9	38
13	Morphological evidence of telocytes in human synovium. Scientific Reports, 2018, 8, 3581.	3.3	37
14	Differential expression of junctional adhesion molecules in different stages of systemic sclerosis. Arthritis and Rheumatism, 2013, 65, 247-257.	6.7	36
15	Telocytes in normal and keratoconic human cornea: an immunohistochemical and transmission electron microscopy study. Journal of Cellular and Molecular Medicine, 2017, 21, 3602-3611.	3.6	36
16	Morphological evidence for telocytes as stromal cells supporting satellite cell activation in eccentric contraction-induced skeletal muscle injury. Scientific Reports, 2019, 9, 14515.	3.3	34
17	Angiogenic T cell expansion correlates with severity of peripheral vascular damage in systemic sclerosis. PLoS ONE, 2017, 12, e0183102.	2.5	32
18	Telocytes in Chronic Inflammatory and Fibrotic Diseases. Advances in Experimental Medicine and Biology, 2016, 913, 51-76.	1.6	29

Irene Rosa

#	Article	IF	CITATIONS
19	Telocytes constitute a widespread interstitial meshwork in the lamina propria and underlying striated muscle of human tongue. Scientific Reports, 2019, 9, 5858.	3.3	28
20	Telocytes: An Emerging Component of Stem Cell Niche Microenvironment. Journal of Histochemistry and Cytochemistry, 2021, 69, 795-818.	2.5	28
21	Proangiogenic effects of soluble α-Klotho on systemic sclerosis dermal microvascular endothelial cells. Arthritis Research and Therapy, 2017, 19, 27.	3.5	26
22	Telocytes in human fetal skeletal muscle interstitium during early myogenesis. Acta Histochemica, 2018, 120, 397-404.	1.8	26
23	A Two-Step Immunomagnetic Microbead-Based Method for the Isolation of Human Primary Skin Telocytes/CD34+ Stromal Cells. International Journal of Molecular Sciences, 2020, 21, 5877.	4.1	26
24	Telocytes in skeletal, cardiac and smooth muscle interstitium: morphological and functional aspects. Histology and Histopathology, 2018, 33, 1151-1165.	0.7	26
25	The contribution of mesenchymal transitions to the pathogenesis of systemic sclerosis. European Journal of Rheumatology, 2020, 7, 157-164.	0.6	26
26	Slit2/Robo4 axis may contribute to endothelial cell dysfunction and angiogenesis disturbance in systemic sclerosis. Annals of the Rheumatic Diseases, 2018, 77, 1665-1674.	0.9	25
27	Mobilization of lymphatic endothelial precursor cells and lymphatic neovascularization in primary SjĶgren's syndrome. Journal of Cellular and Molecular Medicine, 2016, 20, 613-622.	3.6	19
28	Adipose-derived stem cells: Pathophysiologic implications <i>vs</i> therapeutic potential in systemic sclerosis. World Journal of Stem Cells, 2021, 13, 30-48.	2.8	19
29	Decreased expression of the endothelial cell-derived factor EGFL7 in systemic sclerosis: potential contribution to impaired angiogenesis and vasculogenesis. Arthritis Research and Therapy, 2013, 15, R165.	3.5	18
30	Telocytes and lymphatic endothelial cells: Two immunophenotypically distinct and spatially close cell entities. Acta Histochemica, 2020, 122, 151530.	1.8	17
31	Changes in the telocyte/CD34+ stromal cell and α-SMA+ myoid cell networks in human testicular seminoma. Acta Histochemica, 2019, 121, 151442.	1.8	16
32	Systemic sclerosis-like histopathological features in the myocardium of uPAR-deficient mice. Annals of the Rheumatic Diseases, 2016, 75, 474-478.	0.9	14
33	The Role of Pro-fibrotic Myofibroblasts in Systemic Sclerosis: From Origin to Therapeutic Targeting. Current Molecular Medicine, 2022, 22, 209-239.	1.3	14
34	New Insights into Profibrotic Myofibroblast Formation in Systemic Sclerosis: When the Vascular Wall Becomes the Enemy. Life, 2021, 11, 610.	2.4	14
35	The contribution of epigenetics to the pathogenesis and gender dimorphism of systemic sclerosis: a comprehensive overview. Therapeutic Advances in Musculoskeletal Disease, 2020, 12, 1759720X2091845.	2.7	13
36	Systemic Sclerosis Serum Steers the Differentiation of Adipose-Derived Stem Cells Toward Profibrotic Myofibroblasts: Pathophysiologic Implications. Journal of Clinical Medicine, 2019, 8, 1256.	2.4	11

Irene Rosa

#	Article	IF	CITATIONS
37	TNF-α/TNF-R System May Represent a Crucial Mediator of Proliferative Synovitis in Hemophilia A. Journal of Clinical Medicine, 2019, 8, 939.	2.4	10
38	Bone Marrow-Mesenchymal Stromal Cell Secretome as Conditioned Medium Relieves Experimental Skeletal Muscle Damage Induced by Ex Vivo Eccentric Contraction. International Journal of Molecular Sciences, 2021, 22, 3645.	4.1	10
39	Impairment in the telocyte/CD34 ⁺ stromal cell network in human rheumatoid arthritis synovium. Journal of Cellular and Molecular Medicine, 2021, 25, 2274-2278.	3.6	10
40	Decreased Serum Levels of SIRT1 and SIRT3 Correlate with Severity of Skin and Lung Fibrosis and Peripheral Microvasculopathy in Systemic Sclerosis. Journal of Clinical Medicine, 2022, 11, 1362.	2.4	10
41	Systemic Sclerosis Serum Significantly Impairs the Multi-Step Lymphangiogenic Process: In Vitro Evidence. International Journal of Molecular Sciences, 2019, 20, 6189.	4.1	9
42	Morphologic evidence of telocytes in human thyroid stromal tissue. Journal of Cellular and Molecular Medicine, 2022, 26, 2477-2481.	3.6	9
43	Decreased circulating lymphatic endothelial progenitor cells in digital ulcer-complicated systemic sclerosis. Annals of the Rheumatic Diseases, 2019, 78, 575-577.	0.9	8
44	Scleroderma-like Impairment in the Network of Telocytes/CD34+ Stromal Cells in the Experimental Mouse Model of Bleomycin-Induced Dermal Fibrosis. International Journal of Molecular Sciences, 2021, 22, 12407.	4.1	8
45	Circulating Neurovascular Guidance Molecules and Their Relationship with Peripheral Microvascular Impairment in Systemic Sclerosis. Life, 2022, 12, 1056.	2.4	4
46	Concomitant Spondyloarthritis and Tenosynovial Giant Cell Tumor in Pigmented Villonodular Synovitis Challenging Cases. Journal of Clinical Rheumatology, 2020, 26, e115-e117.	0.9	1
47	Manual DALK in Keratoconus. Cornea, 2021, Publish Ahead of Print, .	1.7	1
48	Blocking Protein S Improves Hemostasis in Hemophilia a and B. Blood, 2016, 128, 79-79.	1.4	1
49	A10.9â€Evidence for Progressive Reduction and Loss of Telocytes in the Dermal Cellular Network of Systemic Sclerosis. Annals of the Rheumatic Diseases, 2013, 72, A75.1-A75.	0.9	0
50	A new avenue in the pathogenesis of systemic sclerosis: the molecular interface between the endothelial and the nervous systems. Clinical and Experimental Rheumatology, 2019, 37 Suppl 119, 133-140.	0.8	0
51	A candidate gene study reveals association between a variant of the SRp55 splicing factor gene and systemic sclerosis. Clinical and Experimental Rheumatology, 2021, , .	0.8	0
52	A candidate gene study reveals association between a variant of the SRp55 splicing factor gene and systemic sclerosis. Clinical and Experimental Rheumatology, 0, , .	0.8	0