

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6468224/publications.pdf Version: 2024-02-01

leili

#	Article	IF	CITATIONS
1	Supramolecular-induced 2.40ÂV 130°C working-temperature-range supercapacitor aqueous electrolyte of lithium bis(trifluoromethanesulfonyl) imide in dimethyl sulfoxide-water. Journal of Colloid and Interface Science, 2022, 608, 1162-1172.	9.4	12
2	Improving the Cycling Stability of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ by Enhancing the Structural Integrity via Synchronous Li ₂ SiO ₃ Coating. ACS Applied Energy Materials, 2022, 5, 4885-4892.	5.1	15
3	High-Performance All-solid-state microsupercapacitors from 3D printing Structure-engineered Graphene-Carbon sphere electrodes. Applied Surface Science, 2022, 597, 153730.	6.1	11
4	Superior-Performance Aqueous Zinc-Ion Batteries Based on the <i>In Situ</i> Growth of MnO ₂ Nanosheets on V ₂ CT _X MXene. ACS Nano, 2021, 15, 2971-2983.	14.6	205
5	Engineered Electrode Structure for Highâ€Performance 3Dâ€Printed Allâ€Solidâ€State Flexible Microsupercapacitors. Advanced Engineering Materials, 2021, 23, 2100357.	3.5	8
6	Highly Sensitive Pseudocapacitive Iontronic Pressure Sensor with Broad Sensing Range. Nano-Micro Letters, 2021, 13, 140.	27.0	69
7	Engineered Electrode Structure for Highâ€Performance 3Dâ€Printed Allâ€Solidâ€State Flexible Microsupercapacitors. Advanced Engineering Materials, 2021, 23, 2170028.	3.5	2
8	3D printable ink for double-electrical-layer-enhanced electrode of microsupercapaitors. Journal of Power Sources, 2021, 512, 230468.	7.8	3
9	Hierarchical Kâ€Birnessiteâ€MnO ₂ Carbon Framework for Highâ€Energyâ€Density and Durable Aqueous Zincâ€Ion Battery. Small, 2021, 17, e2104557.	10.0	37
10	Solutionâ€Processed Allâ€V ₂ O ₅ Battery. Small, 2020, 16, e2003816.	10.0	4
11	Boosting areal energy density of 3D printed all-solid-state flexible microsupercapacitors via tailoring graphene composition. Energy Storage Materials, 2020, 30, 412-419.	18.0	38
12	Direct Grapheneâ€Carbon Nanotube Composite Ink Writing Allâ€Solidâ€State Flexible Microsupercapacitors with High Areal Energy Density. Advanced Functional Materials, 2020, 30, 1907284.	14.9	79
13	Interfacial Engineering of Nickel Boride/Metaborate and Its Effect on High Energy Density Asymmetric Supercapacitors. ACS Nano, 2019, 13, 9376-9385.	14.6	129
14	Co ²⁺ induced phase transformation from δ- to α-MnO ₂ and their hierarchical α-MnO ₂ @δ-MnO ₂ nanostructures for efficient asymmetric supercapacitors. Journal of Materials Chemistry A, 2019, 7, 12661-12668.	10.3	43
15	Layer structured bismuth selenides Bi ₂ Se ₃ and Bi ₃ Se ₄ for high energy and flexible all-solid-state micro-supercapacitors. Nanotechnology, 2018, 29, 085401.	2.6	16
16	Controllable preparation of 2D nickel aluminum layered double hydroxide nanoplates for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 17493-17502.	2.2	9
17	Origin of Fractureâ€Resistance to Large Volume Change in Cuâ€Substituted Co ₃ O ₄ Electrodes. Advanced Materials, 2018, 30, 1704851.	21.0	29
18	Inorganic Porous Films for Renewable Energy Storage. ACS Energy Letters, 2017, 2, 373-390.	17.4	68

Lei Li

#	Article	IF	CITATIONS
19	Polyaniline supercapacitors. Journal of Power Sources, 2017, 347, 86-107.	7.8	723
20	Germanium on seamless graphene carbon nanotube hybrids for lithium ion anodes. Carbon, 2017, 123, 433-439.	10.3	35
21	Nitrogen-doped carbonized cotton for highly flexible supercapacitors. Carbon, 2016, 105, 260-267.	10.3	108
22	Silicon Nanowires and Lithium Cobalt Oxide Nanowires in Graphene Nanoribbon Papers for Full Lithium Ion Battery. Advanced Energy Materials, 2016, 6, 1600918.	19.5	80
23	Highâ€Performance Solidâ€6tate Supercapacitors and Microsupercapacitors Derived from Printable Graphene Inks. Advanced Energy Materials, 2016, 6, 1600909.	19.5	139
24	Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Research, 2016, 9, 2904-2911.	10.4	52
25	Highâ€Performance Pseudocapacitive Microsupercapacitors from Laserâ€Induced Graphene. Advanced Materials, 2016, 28, 838-845.	21.0	439
26	Growth and Transfer of Seamless 3D Graphene–Nanotube Hybrids. Nano Letters, 2016, 16, 1287-1292.	9.1	26
27	Enhanced Cycling Stability of Lithiumâ€lon Batteries Using Grapheneâ€Wrapped Fe ₃ O ₄ â€Graphene Nanoribbons as Anode Materials. Advanced Energy Materials, 2015, 5, 1500171.	19.5	133
28	Cobalt Nanoparticles Embedded in Nitrogen-Doped Carbon for the Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 8083-8087.	8.0	180
29	Carbon-Free Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2015, 7, 20607-20611.	8.0	39
30	Tin Disulfide Nanoplates on Graphene Nanoribbons for Full Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 26549-26556.	8.0	47
31	Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Research, 2014, 7, 502-510.	10.4	102
32	Silverâ€Graphene Nanoribbon Composite Catalyst for the Oxygen Reduction Reaction in Alkaline Electrolyte. Electroanalysis, 2014, 26, 164-170.	2.9	61
33	Graphene on Metal Grids as the Transparent Conductive Material for Dye Sensitized Solar Cell. Journal of Physical Chemistry C, 2014, 118, 25863-25868.	3.1	38
34	Enhanced Cycling Stability of Lithium Sulfur Batteries Using Sulfur–Polyaniline–Graphene Nanoribbon Composite Cathodes. ACS Applied Materials & Interfaces, 2014, 6, 15033-15039.	8.0	80
35	SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Research, 2014, 7, 1319-1326.	10.4	66
36	Hydrothermally Formed Three-Dimensional Nanoporous Ni(OH) ₂ Thin-Film Supercapacitors. ACS Nano, 2014, 8, 9622-9628.	14.6	148

Lei Li

#	Article	IF	CITATIONS
37	LiFePO4 nanoparticles encapsulated in graphene nanoshells for high-performance lithium-ion battery cathodes. Chemical Communications, 2014, 50, 7117.	4.1	47
38	Graphene Nanoribbon/V ₂ O ₅ Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 9590-9594.	8.0	96
39	Three-Dimensional Thin Film for Lithium-Ion Batteries and Supercapacitors. ACS Nano, 2014, 8, 7279-7287.	14.6	50
40	Nanocomposite of Polyaniline Nanorods Grown on Graphene Nanoribbons for Highly Capacitive Pseudocapacitors. ACS Applied Materials & Interfaces, 2013, 5, 6622-6627.	8.0	171
41	Grapheneâ€Wrapped MnO ₂ –Graphene Nanoribbons as Anode Materials for Highâ€Performance Lithium Ion Batteries. Advanced Materials, 2013, 25, 6298-6302.	21.0	355
42	A seamless three-dimensional carbon nanotube graphene hybrid material. Nature Communications, 2012, 3, 1225.	12.8	456
43	Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils. ACS Nano, 2012, 6, 9110-9117.	14.6	537
44	Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. Nature Communications, 2012, 3, 1101.	12.8	162
45	Selective fluorescent probes based on CN isomerization and intramolecular charge transfer (ICT) for zinc ions in aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 1688-1692.	3.9	43
46	Fluorescent chemosensor based on Schiff base for selective detection of zinc(II) in aqueous solution. Tetrahedron Letters, 2010, 51, 618-621.	1.4	99
47	A highly selective fluorescent sensor for mercury ions in aqueous solution: Detection based on target-induced aggregation. Sensors and Actuators B: Chemical, 2010, 148, 49-53.	7.8	26
48	Clarification of the binding model of lead(II) with a highly sensitive and selective fluoroionophore sensor by spectroscopic and structural study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 72, 306-311.	3.9	10
49	Selective Detection of Trace Cr ³⁺ in Aqueous Solution by Using 5,5′-Dithiobis (2-Nitrobenzoic acid)-Modified Gold Nanoparticles. ACS Applied Materials & Interfaces, 2009, 1, 1533-1538.	8.0	134
50	A protein-supported fluorescent reagent for the highly-sensitive and selective detection of mercury ions in aqueous solution and live cells. Chemical Communications, 2008, , 6345.	4.1	85