Andre Drenth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6467973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epidemic spread of smut fungi (Quambalaria) by sexual reproduction in a native pathosystem. European Journal of Plant Pathology, 2022, 163, 341-349.	0.8	1
2	Draft Genome Sequence of <i>Ralstonia syzygii</i> subsp. <i>celebesensis</i> from Indonesia, the Causal Agent of Blood Disease of Banana. Phytopathology, 2022, , PHYTO10210443A.	1.1	4
3	The Vulnerability of Bananas to Globally Emerging Disease Threats. Phytopathology, 2021, 111, 2146-2161.	1.1	36
4	Susceptibility of the banana inflorescence to Blood disease. Phytopathology, 2021, , .	1.1	2
5	First report of Phyllosticta spp. associated with banana freckle disease in southern Lao PDR. Australasian Plant Disease Notes, 2021, 16, 1.	0.4	1
6	Sexual reproduction in populations of Austropuccinia psidii. European Journal of Plant Pathology, 2020, 156, 537-545.	0.8	8
7	Prevalence of <i>Phytophthora</i> species in macadamia orchards in Australia and their ability to cause stem canker. Plant Pathology, 2020, 69, 1270-1280.	1.2	16
8	Transcriptomic data of the Musa balbisiana cultivar Kepok inoculated with Ralstonia syzigii subsp. celebesensis and Ralstonia solanacearum. Data in Brief, 2020, 29, 105366.	0.5	2
9	Couch smut, an economically important disease of Cynodon dactylon in Australia. Australasian Plant Pathology, 2020, 49, 87-94.	0.5	0
10	Fungal clones win the battle, but recombination wins the war. IMA Fungus, 2019, 10, 18.	1.7	53
11	Molecular Diagnostics of Banana Fusarium Wilt Targeting Secreted-in-Xylem Genes. Frontiers in Plant Science, 2019, 10, 547.	1.7	45
12	Phyllosticta capitalensis and P. paracapitalensis are endophytic fungi that show potential to inhibit pathogenic P. citricarpa on citrus. Australasian Plant Pathology, 2019, 48, 281-296.	0.5	11
13	ldentification of Resistance to Citrus Black Spot Using a Novel In-field Inoculation Assay. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 1673-1681.	0.5	5
14	Pathogenicity of <i>Phyllosticta citricarpa</i> Ascospores on <i>Citrus</i> spp Plant Disease, 2018, 102, 1386-1393.	0.7	12
15	New Geographical Insights of the Latest Expansion of Fusarium oxysporum f.sp. cubense Tropical Race 4 Into the Greater Mekong Subregion. Frontiers in Plant Science, 2018, 9, 457.	1.7	96
16	Field evaluation of six Gros Michel banana accessions (Musa spp., AAA group) for agronomic performance, resistance to Fusarium wilt race 1 and yellow Sigatoka. Crop Protection, 2018, 113, 84-89.	1.0	5
17	Characterization of accessions and species of <i>Macadamia</i> to stem infection by <i>Phytophthora cinnamomi</i> . Plant Pathology, 2017, 66, 186-193.	1.2	7
18	Sexual Reproduction in the Citrus Black Spot Pathogen, <i>Phyllosticta citricarpa</i> . Phytopathology, 2017, 107, 732-739.	1.1	33

#	Article	IF	CITATIONS
19	Characterisation of husk rot in macadamia. Annals of Applied Biology, 2017, 170, 104-115.	1.3	16
20	Dry Flower Disease of <i>Macadamia</i> in Australia Caused by <i>Neopestalotiopsis macadamiae</i> sp. nov. and <i>Pestalotiopsis macadamiae</i> sp. nov Plant Disease, 2017, 101, 45-53.	0.7	38
21	Fungal Genomics Challenges the Dogma of Name-Based Biosecurity. PLoS Pathogens, 2016, 12, e1005475.	2.1	36
22	Field evaluation of tolerance to <i>Tobacco streak virus</i> in sunflower germplasm, and observations of seasonal disease spread. Annals of Applied Biology, 2016, 168, 390-399.	1.3	4
23	Soil health management is a precursor to sustainable control of <i>Phytophthora</i> in macadamia. Acta Horticulturae, 2016, , 203-208.	0.1	4
24	Fruit abscission in macadamia due to husk spot disease. Acta Horticulturae, 2016, , 209-214.	0.1	4
25	Fungal and Oomycete Diseases of Tropical Tree Fruit Crops. Annual Review of Phytopathology, 2016, 54, 373-395.	3.5	64
26	Bud Rot Caused by <i>Phytophthora palmivora</i> : A Destructive Emerging Disease of Oil Palm. Phytopathology, 2016, 106, 320-329.	1.1	70
27	Sustainable control of husk spot of macadamia by cultural practices. Acta Horticulturae, 2016, , 231-236.	0.1	2
28	Variation in susceptibility among macadamia genotypes and species to Phytophthora root decay caused by Phytophthora cinnamomi. Crop Protection, 2016, 87, 37-43.	1.0	10
29	Histopathological studies of the process of Phytophthora palmivora infection in oil palm. European Journal of Plant Pathology, 2016, 145, 39-51.	0.8	24
30	Potential Economic Impact of Panama Disease (Tropical Race 4) on the Australian Banana Industry. Journal of Plant Diseases and Protection, 2015, 122, 229-237.	1.6	39
31	Worse Comes to Worst: Bananas and Panama Disease—When Plant and Pathogen Clones Meet. PLoS Pathogens, 2015, 11, e1005197.	2.1	167
32	Novel Pathotypes of Elsinoë australis Associated with Citrus australasica and Simmondsia chinensis in Australia. Tropical Plant Pathology, 2015, 40, 26-34.	0.8	10
33	Development of a Multiplexed Bead-Based Suspension Array for the Detection and Discrimination of Pospiviroid Plant Pathogens. PLoS ONE, 2014, 9, e84743.	1.1	32
34	Timing of Infection and Development of Alternaria Diseases in the Canopy of Apple Trees. Plant Disease, 2014, 98, 401-408.	0.7	22
35	Jackfruit decline caused by Phytophthora palmivora (Butler). Australasian Plant Pathology, 2014, 43, 123-129.	0.5	13
36	An outbreak of Potato spindle tuber viroid in tomato is linked to imported seed. European Journal of Plant Pathology, 2014, 139, 1-7.	0.8	31

#	Article	lF	CITATIONS
37	Pathogenic variation of Alternaria species associated with leaf blotch and fruit spot of apple in Australia. European Journal of Plant Pathology, 2014, 139, 789-799.	0.8	25
38	Comparative fitness of Alternaria species causing leaf blotch and fruit spot of apple in Australia. Australasian Plant Pathology, 2014, 43, 495-501.	0.5	5
39	A bead-based suspension array for the multiplexed detection of begomoviruses and their whitefly vectors. Journal of Virological Methods, 2014, 198, 86-94.	1.0	20
40	Sources and seasonal dynamics of Alternaria inoculum associated with leaf blotch and fruit spot of apples. Crop Protection, 2014, 59, 35-42.	1.0	17
41	Multiple <i>Alternaria</i> species groups are associated with leaf blotch and fruit spot diseases of apple in Australia. Plant Pathology, 2013, 62, 289-297.	1.2	59
42	Phyllosticta spp. on cultivated Citrus in Australia. Australasian Plant Pathology, 2013, 42, 461-467.	0.5	13
43	Predicted economic impact of black Sigatoka on the Australian banana industry. Crop Protection, 2013, 51, 48-56.	1.0	8
44	Identification and differentiation of <i>Phyllosticta</i> species causing freckle disease of banana using high resolution melting (<scp>HRM</scp>) analysis. Plant Pathology, 2013, 62, 1285-1293.	1.2	14
45	Mode of Infection of <i>Phyllosticta maculata</i> on Banana as Revealed by Scanning Electron Microscopy. Journal of Phytopathology, 2013, 161, 135-141.	0.5	7
46	Phosphite and metalaxyl rejuvenate macadamia trees in decline caused by Phytophthora cinnamomi. Crop Protection, 2013, 53, 29-36.	1.0	27
47	Panel of realâ€time <scp>PCR</scp> s for the multiplexed detection of two tomatoâ€infecting begomoviruses and their cognate whitefly vector species. Plant Pathology, 2013, 62, 1132-1146.	1.2	11
48	<i>Phytophthora palmivora</i> in tropical tree crops , 2013, , 187-196.		10
49	Economic returns from fungicide application to control husk spot of macadamia in Australia is influenced by spray efficiency, rates and costs of application. Crop Protection, 2012, 41, 35-41.	1.0	7
50	Phyllosticta species associated with freckle disease of banana. Fungal Diversity, 2012, 56, 173-187.	4.7	52
51	Predicting the Benefits of Banana Bunchy Top Virus Exclusion from Commercial Plantations in Australia. PLoS ONE, 2012, 7, e42391.	1.1	23
52	Pericarps retained in the tree canopy and stomatal abundance are components of resistance to husk spot caused by Pseudocercospora macadamiae in macadamia. Euphytica, 2012, 185, 313-323.	0.6	9
53	Phosphonate applied as a pre-plant dip controls Phytophthora cinnamomi root and heart rot in susceptible pineapple hybrids. Australasian Plant Pathology, 2012, 41, 59-68.	0.5	20
54	Occurrence and pathogenicity of <i>Neofusicoccum parvum</i> and <i>N. mangiferae</i> on ornamental <i>Tibouchina</i> species. Forest Pathology, 2011, 41, 48-51.	0.5	15

#	Article	IF	CITATIONS
55	Spread and development of quambalaria shoot blight in spotted gum plantations. Plant Pathology, 2011, 60, 1096-1106.	1.2	10
56	Variability in aggressiveness of <i>Quambalaria pitereka</i> isolates. Plant Pathology, 2011, 60, 1107-1117.	1.2	17
57	Variable resistance to Quambalaria pitereka in spotted gum reveal opportunities for disease screening. Australasian Plant Pathology, 2011, 40, 76-86.	0.5	29
58	Potential gains through selecting for resistance in spotted gum to Quambalaria pitereka. Australasian Plant Pathology, 2011, 40, 197-206.	0.5	3
59	Genome diversity in wild grasses under environmental stress. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21140-21145.	3.3	38
60	Different Domains of <i>Phytophthora sojae</i> Effector Avr4/6 Are Recognized by Soybean Resistance Genes <i>Rps</i> 4 and <i>Rps</i> 6. Molecular Plant-Microbe Interactions, 2010, 23, 425-435.	1.4	97
61	Timing of infection of macadamia fruit by <i>Pseudocercospora macadamiae</i> and climatic effects on growth and spore germination. Australasian Plant Pathology, 2010, 39, 453.	0.5	13
62	The <i>Eucalyptus</i> canker pathogen <i>Chrysoporthe cubensis</i> discovered in eastern Australia. Australasian Plant Pathology, 2010, 39, 343.	0.5	15
63	Source of Pseudocercospora macadamiae inoculum in macadamia trees and its use for characterising husk spot susceptibility in the field. Crop Protection, 2010, 29, 1347-1353.	1.0	8
64	Ubiquity of ToxA and absence of ToxB in Australian populations of <i>Pyrenophora tritici</i> - <i>repentis</i> . Australasian Plant Pathology, 2010, 39, 63.	0.5	59
65	Spatial pattern and the effects of climatic factors on husk spot disease in macadamia. Australasian Plant Pathology, 2010, 39, 125.	0.5	10
66	AFLP analysis reveals a clonal population of Phytophthora pinifolia in Chile. Fungal Biology, 2010, 114, 746-752.	1.1	26
67	Identification and occurrence of the LTR-Copia-like retrotransposon, PSCR and other Copia-like elements in the genome of Phytophthora sojae. Current Genetics, 2009, 55, 521-536.	0.8	7
68	DNA-based method for rapid identification of the pine pathogen, <i>Phytophthora pinifolia</i> . FEMS Microbiology Letters, 2009, 298, 99-104.	0.7	14
69	Infection, colonisation and sporulation byPseudocercospora macadamiaeon macadamia fruit. Australasian Plant Pathology, 2009, 38, 36.	0.5	20
70	<i>Quambalaria</i> species: increasing threat to eucalypt plantations in Australia. Southern Forests, 2009, 71, 111-114.	0.2	17
71	Infection and disease development of <i>Quambalaria</i> spp. on <i>Corymbia</i> and <i>Eucalyptus</i> species. Plant Pathology, 2009, 58, 642-654.	1.2	24
72	Genetic Diversity, Aggressiveness and Metalaxyl Sensitivity of <i>Pythium spinosum</i> Infecting Cucumber in Oman. Journal of Phytopathology, 2008, 156, 29-35.	0.5	20

#	Article	IF	CITATIONS
73	Alternative fungicides for controlling husk spot caused by <i>Pseudocercospora macadamiae</i> in macadamia. Australasian Plant Pathology, 2008, 37, 141.	0.5	15
74	Potential sources of <i>Pythium</i> inoculum into Greenhouse Soils with no Previous History of Cultivation. Journal of Phytopathology, 2008, 156, 502-505.	0.5	29
75	<i>Quambalaria</i> species associated with plantation and native eucalypts in Australia. Plant Pathology, 2008, 57, 702-714.	1.2	35
76	Association of a second phase of mortality in cucumber seedlings with a rapid rate of metalaxyl biodegradation in greenhouse soils. Crop Protection, 2008, 27, 1110-1117.	1.0	16
77	First Report of <i>Pythium splendens</i> Associated with Severe Wilt of Muskmelon (<i>Cucumis) Tj ETQq1 1</i>	0.784314 r 0.7	gBT /Overlock
78	Timing of Fungicide Applications for Control of Husk Spot Caused by Pseudocercospora macadamiae in Macadamia. Plant Disease, 2007, 91, 1675-1681.	0.7	20
79	Genetic diversity, aggressiveness and metalaxyl sensitivity of Pythium aphanidermatum populations infecting cucumber in Oman. Plant Pathology, 2007, 57, 070918211612004-???.	1.2	12
80	Molecular characterization and pathogenicity of Pythium species associated with damping-off in greenhouse cucumber (Cucumis sativus) in Oman. Plant Pathology, 2007, 56, 140.	1.2	50
81	First report ofTubercularia lateritiaas the causal agent of canker on macadamia. Australasian Plant Disease Notes, 2006, 1, 49.	0.4	7
82	Development of a DNA-based method for detection and identification ofPhytophthoraspecies. Australasian Plant Pathology, 2006, 35, 147.	0.5	67
83	Pathogens associated with nursery plants imported into Western Australia. Australasian Plant Pathology, 2006, 35, 473.	0.5	35
84	Fungal epidemics – does spatial structure matter?. New Phytologist, 2004, 163, 4-7.	3.5	12
85	Phytophthora sojae avirulence genes Avr4 and Avr6 are located in a 24kb, recombination-rich region of genomic DNA. Fungal Genetics and Biology, 2004, 41, 62-74.	0.9	22
86	Interspecific hybrids between the homothallic Phytophthora sojae and Phytophthora vignae. Australasian Plant Pathology, 2003, 32, 353.	0.5	18
87	A Rapid Seedling Based Screening Technique to Assay Tobacco for Resistance to Phytophthora nicotianae. Journal of Phytopathology, 2003, 151, 389-394.	0.5	5
88	Effect of Metalaxyl Resistance and Cultivar Resistance on Control of Phytophthora nicotianae in Tobacco. Plant Disease, 2002, 86, 362-366.	0.7	14
89	Inheritance and mapping of 11 avirulence genes in Phytophthora sojae. Fungal Genetics and Biology, 2002, 37, 1-12.	0.9	60
90	Evaluation of Tobacco Cultivars for Resistance to Races of Phytophthora nicotianae in South Africa. Journal of Phytopathology, 2002, 150, 456-462.	0.5	24

#	Article	IF	CITATIONS
91	Sexual recombination inPhytophthora cinnamomi in vitroand aggressiveness of single-oospore progeny toEucalyptus. Plant Pathology, 2001, 50, 97-102.	1.2	16
92	Title is missing!. European Journal of Plant Pathology, 2001, 107, 305-311.	0.8	12
93	Pythium insidiosum keratitis confirmed by DNA sequence analysis. British Journal of Ophthalmology, 2001, 85, 496g-496.	2.1	67
94	A Molecular Phylogeny of Phytophthora and Related Oomycetes. Fungal Genetics and Biology, 2000, 30, 17-32.	0.9	959
95	Title is missing!. European Journal of Plant Pathology, 1999, 105, 667-680.	0.8	52
96	DISEASE NOTES OR NEW RECORDS: First record of Phytophthora capsici from Queensland. Australasian Plant Pathology, 1999, 28, 93.	0.5	2
97	A Global Marker Database for Phytophthora infestans. Plant Disease, 1998, 82, 811-818.	0.7	93
98	Changes in the Racial Composition of Phytophthora sojae in Australia Between 1979 and 1996. Plant Disease, 1998, 82, 1048-1054.	0.7	70
99	Population Structure of Phytophthora cinnamomi in South Africa. Phytopathology, 1997, 87, 822-827.	1.1	48
100	Origin of the A2 Mating Type of Phytophthora infestans Outside Mexico. Phytopathology, 1997, 87, 992-999.	1.1	82
101	AFLP Linkage Map of the OomycetePhytophthora infestans. Fungal Genetics and Biology, 1997, 21, 278-291.	0.9	147
102	Evolutionary relationships among Phytophthora species deduced from rDNA sequence analysis. Mycological Research, 1996, 100, 437-443.	2.5	104
103	Evolutionary relationships among Phytophthora species deduced from rDNA sequence analysis. Mycological Research, 1996, 100, 1218.	2.5	5
104	The Evolution of Races ofPhytophthora sojaein Australia. Phytopathology, 1996, 86, 163.	1.1	47
105	Phytophthora in Australia. Australian Journal of Agricultural Research, 1995, 46, 1311.	1.5	42
106	Formation and survival of oospores of Phytophthora infestans under natural conditions. Plant Pathology, 1995, 44, 86-94.	1.2	147
107	Phytophthora sojaeAvirulence Genes, RAPD, and RFLP Markers Used to Construct a Detailed Genetic Linkage Map. Molecular Plant-Microbe Interactions, 1995, 8, 988.	1.4	82
108	DNA fingerprinting uncovers a new sexually reproducing population ofPhytophthora infestans in the Netherlands. European Journal of Plant Pathology, 1994, 100, 97-107.	0.8	174

#	Article	IF	CITATIONS
109	Evidence for outcrossing in Phytophthora sojae and linkage of a DNA marker to two avirulence genes. Current Genetics, 1994, 27, 77-82.	0.8	98
110	The occurrence of the A2 mating type of Phytophthora infestans in the Netherlands; significance and consequences. European Journal of Plant Pathology, 1993, 99, 57-67.	0.5	56
111	Historical and Recent Migrations of <i>Phytophthora infestans</i> : Chronology, Pathways, and Implications. Plant Disease, 1993, 77, 653.	0.7	319
112	Genotypic Diversity ofPhytophthora infestansin The Netherlands Revealed by DNA Polymorphisms. Phytopathology, 1993, 83, 1087.	1.1	87
113	Population Genetics and Intercontinental Migrations of Phytophthora Infestans. Annual Review of Phytopathology, 1992, 30, 107-130.	3.5	217
114	Cloning and genetic analyses of two highly polymorphic, moderately repetitive nuclear DNAs from Phytophthora infestans. Current Genetics, 1992, 22, 107-115.	0.8	266
115	A second world-wide migration and population displacement of Phytophthora infestans?. Plant Pathology, 1991, 40, 422-430.	1.2	175
116	Population Genetic Structure of <i>Phytophthora infestans</i> in the Netherlands. Phytopathology, 1991, 81, 1330.	1.1	76
117	A dynamic, web-based resource to identify rust fungi (Pucciniales) in southern Africa. MycoKeys, 0, 26, 77-83.	0.8	3