Claudia Robertson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6467758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generation and Release of Neurogranin, Vimentin, and MBP Proteolytic Peptides, Following Traumatic Brain Injury. Molecular Neurobiology, 2022, 59, 731-747.	4.0	11
2	Predicting Clinical Outcomes 7–10 Years after Severe Traumatic Brain Injury: Exploring the Prognostic Utility of the IMPACT Lab Model and Cerebrospinal Fluid UCH-L1 and MAP-2. Neurocritical Care, 2022, , .	2.4	0
3	A Precision Medicine Agenda in Traumatic Brain Injury. Frontiers in Pharmacology, 2022, 13, 713100.	3.5	5
4	Diffusion Tensor Imaging Reveals Elevated Diffusivity of White Matter Microstructure that Is Independently Associated with Long-Term Outcome after Mild Traumatic Brain Injury: A TRACK-TBI Study. Journal of Neurotrauma, 2022, 39, 1318-1328.	3.4	23
5	Early versus Late Profiles of Inflammatory Cytokines after Mild Traumatic Brain Injury and Their Association with Neuropsychological Outcomes. Journal of Neurotrauma, 2021, 38, 53-62.	3.4	36
6	High-Sensitivity C-Reactive Protein is a Prognostic Biomarker of Six-Month Disability after Traumatic Brain Injury: Results from the TRACK-TBI Study. Journal of Neurotrauma, 2021, 38, 918-927.	3.4	33
7	Smaller Regional Brain Volumes Predict Posttraumatic Stress Disorder at 3 Months After Mild Traumatic Brain Injury. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 352-359.	1.5	8
8	Latent Profile Analysis of Neuropsychiatric Symptoms and Cognitive Function of Adults 2 Weeks After Traumatic Brain Injury. JAMA Network Open, 2021, 4, e213467.	5.9	22
9	Functional Outcomes Over the First Year After Moderate to Severe Traumatic Brain Injury in the Prospective, Longitudinal TRACK-TBI Study. JAMA Neurology, 2021, 78, 982.	9.0	103
10	Pathological Computed Tomography Features Associated With Adverse Outcomes After Mild Traumatic Brain Injury. JAMA Neurology, 2021, 78, 1137.	9.0	53
11	Disability Rating Scale in the First Few Weeks After a Severe Traumatic Brain Injury as a Predictor of 6-Month Functional Outcome. Neurosurgery, 2021, 88, 619-626.	1.1	2
12	Diagnosing Level of Consciousness: The Limits of the Glasgow Coma Scale Total Score. Journal of Neurotrauma, 2021, 38, 3295-3305.	3.4	51
13	Association of Posttraumatic Epilepsy With 1-Year Outcomes After Traumatic Brain Injury. JAMA Network Open, 2021, 4, e2140191.	5.9	18
14	The evolution of white matter microstructural changes after mild traumatic brain injury: A longitudinal DTI and NODDI study. Science Advances, 2020, 6, eaaz6892.	10.3	106
15	Impact of Antithrombotic Agents on Radiological Lesion Progression in Acute Traumatic Brain Injury: A CENTER-TBI Propensity-Matched Cohort Analysis. Journal of Neurotrauma, 2020, 37, 2069-2080.	3.4	22
16	MicroRNA sequencing of rat hippocampus and human biofluids identifies acute, chronic, focal and diffuse traumatic brain injuries. Scientific Reports, 2020, 10, 3341.	3.3	16
17	A management algorithm for adult patients with both brain oxygen and intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Medicine, 2020, 46, 919-929.	8.2	207
18	Secondary brain injury: Predicting and preventing insults. Neuropharmacology, 2019, 145, 145-152.	4.1	70

#	Article	IF	CITATIONS
19	A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Medicine, 2019, 45, 1783-1794.	8.2	292
20	Functional and Structural Improvement with a Catalytic Carbon Nano-Antioxidant in Experimental Traumatic Brain Injury Complicated by Hypotension and Resuscitation. Journal of Neurotrauma, 2019, 36, 2139-2146.	3.4	6
21	Recovery After Mild Traumatic Brain Injury in Patients Presenting to US Level I Trauma Centers. JAMA Neurology, 2019, 76, 1049.	9.0	247
22	Multicenter Validation of the Survival After Acute Civilian Penetrating Brain Injuries (SPIN) Score. Neurosurgery, 2019, 85, E872-E879.	1.1	13
23	Longitudinal Changes in Disability Rating Scale Scores: A Secondary Analysis Among Patients With Severe TBI Enrolled in the Epo Clinical Trial. Journal of the International Neuropsychological Society, 2019, 25, 293-301.	1.8	8
24	Prognosis of Six-Month Glasgow Outcome Scale in Severe Traumatic Brain Injury Using Hospital Admission Characteristics, Injury Severity Characteristics, and Physiological Monitoring during the First Day Post-Injury. Journal of Neurotrauma, 2019, 36, 2417-2422.	3.4	23
25	Glasgow Outcome Scale Measures and Impact on Analysis and Results of a Randomized Clinical Trial of Severe Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 2484-2492.	3.4	13
26	Factors associated with shunt-dependent hydrocephalus after decompressive craniectomy for traumatic brain injury. Journal of Neurosurgery, 2018, 128, 1547-1552.	1.6	47
27	Temporal Profile of Microtubule-Associated Protein 2: A Novel Indicator of Diffuse Brain Injury Severity and Early Mortality after Brain Trauma. Journal of Neurotrauma, 2018, 35, 32-40.	3.4	19
28	Repeated mild traumatic brain injury produces neuroinflammation, anxiety-like behaviour and impaired spatial memory in mice. Brain Injury, 2018, 32, 113-122.	1.2	59
29	Assessment of Follow-up Care After Emergency Department Presentation for Mild Traumatic Brain Injury and Concussion. JAMA Network Open, 2018, 1, e180210.	5.9	119
30	Pre-Clinical Testing of Therapies for Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 2737-2754.	3.4	68
31	Arginase overexpression in neurons and its effect on traumatic brain injury. Molecular Genetics and Metabolism, 2018, 125, 112-117.	1.1	22
32	Evaluation of a Device Combining an Inferior VenaÂCava Filter and a Central Venous CatheterÂforÂPreventing Pulmonary Embolism Among Critically III Trauma Patients. Journal of Vascular and Interventional Radiology, 2017, 28, 1248-1254.	0.5	22
33	Phase II Clinical Trial of Atorvastatin in Mild Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 1394-1401.	3.4	29
34	Morbidity and mortality associated with hypernatremia in patients with severe traumatic brain injury. Neurosurgical Focus, 2017, 43, E2.	2.3	50
35	RhoA-ROCK Inhibition Reverses Synaptic Remodeling and Motor and Cognitive Deficits Caused by Traumatic Brain Injury. Scientific Reports, 2017, 7, 10689.	3.3	53
36	Plasma cytokines IL-6, IL-8, and IL-10 are associated with the development of acute respiratory distress syndrome in patients with severe traumatic brain injury. Critical Care, 2016, 20, 288.	5.8	85

#	Article	IF	CITATIONS
37	Critical Care Management of the Patient with Traumatic Brain Injury. Seminars in Neurology, 2016, 36, 570-576.	1.4	6
38	Clinical application of near-infrared spectroscopy in patients with traumatic brain injury: a review of the progress of the field. Neurophotonics, 2016, 3, 031409.	3.3	48
39	The Role of Multimodal Invasive Monitoring in Acute Traumatic Brain Injury. Neurosurgery Clinics of North America, 2016, 27, 509-517.	1.7	39
40	Hypothermia for Increased Intracranial Pressure: Is It Dead?. Current Neurology and Neuroscience Reports, 2016, 16, 78.	4.2	16
41	Loss of Consciousness Is Related to White Matter Injury in Mild Traumatic Brain Injury. Journal of Neurotrauma, 2016, 33, 2000-2010.	3.4	40
42	Progressive hemorrhagic injury after severe traumatic brain injury: effect of hemoglobin transfusion thresholds. Journal of Neurosurgery, 2016, 125, 1229-1234.	1.6	46
43	Cortical Thickness in Mild Traumatic Brain Injury. Journal of Neurotrauma, 2016, 33, 1809-1817.	3.4	54
44	Systemic manifestations of traumatic brain injury. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2015, 127, 205-218.	1.8	44
45	Axon Initial Segment–Associated Microglia. Journal of Neuroscience, 2015, 35, 2283-2292.	3.6	107
46	A Consensus-Based Interpretation of the Benchmark Evidence from South American Trials: Treatment of Intracranial Pressure Trial. Journal of Neurotrauma, 2015, 32, 1722-1724.	3.4	94
47	Predictors of intensive care unit length of stay and intracranial pressure in severe traumatic brain injury. Journal of Critical Care, 2015, 30, 1258-1262.	2.2	24
48	Lateral Ventricle Volume Asymmetry Predicts Midline Shift in Severe Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 1307-1311.	3.4	11
49	Transfusion in Traumatic Brain Injury. Current Treatment Options in Neurology, 2015, 17, 46.	1.8	8
50	Effect of Hemoglobin Transfusion Threshold on Cerebral Hemodynamics and Oxygenation. Journal of Neurotrauma, 2015, 32, 1239-1245.	3.4	36
51	Multi-modal MRI of mild traumatic brain injury. NeuroImage: Clinical, 2015, 7, 87-97.	2.7	82
52	Endothelial Nitric Oxide Synthase Mediates the Cerebrovascular Effects of Erythropoietin in Traumatic Brain Injury. Frontiers in Immunology, 2014, 5, 494.	4.8	15
53	Erythropoietin for Traumatic Brain Injury—Reply. JAMA - Journal of the American Medical Association, 2014, 312, 1929.	7.4	0
54	Effect of Erythropoietin and Transfusion Threshold on Neurological Recovery After Traumatic Brain Injury. JAMA - Journal of the American Medical Association, 2014, 312, 36.	7.4	414

#	Article	IF	CITATIONS
55	Dual Vulnerability of TDP-43 to Calpain and Caspase-3 Proteolysis after Neurotoxic Conditions and Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1444-1452.	4.3	63
56	Human Traumatic Brain Injury Induces Autoantibody Response against Glial Fibrillary Acidic Protein and Its Breakdown Products. PLoS ONE, 2014, 9, e92698.	2.5	149
57	Erythropoietin in the Neurology ICU. Current Treatment Options in Neurology, 2013, 15, 104-112.	1.8	4
58	Studies of Mild Traumatic Brain Injury. Journal of Neurotrauma, 2013, 30, 609-609.	3.4	1
59	Treatment of Mild Traumatic Brain Injury with an Erythropoietin-Mimetic Peptide. Journal of Neurotrauma, 2013, 30, 765-774.	3.4	26
60	Alcohol and the head-injured patient. Trauma, 2012, 14, 233-242.	0.5	5
61	Neuroprotection with an Erythropoietin Mimetic Peptide (pHBSP) in a Model of Mild Traumatic Brain Injury Complicated by Hemorrhagic Shock. Journal of Neurotrauma, 2012, 29, 1156-1166.	3.4	42
62	Variants of the Endothelial Nitric Oxide Gene and Cerebral Blood Flow after Severe Traumatic Brain Injury. Journal of Neurotrauma, 2011, 28, 727-737.	3.4	39
63	Clinical Evaluation of a Portable Near-Infrared Device for Detection of Traumatic Intracranial Hematomas. Journal of Neurotrauma, 2010, 27, 1597-1604.	3.4	79
64	Finding family for prospective consent in emergency research. Clinical Trials, 2007, 4, 631-637.	1.6	11
65	Every breath you take: hyperventilation and intracranial pressure Cleveland Clinic Journal of Medicine, 2004, 71, S14-S14.	1.3	16
66	S-Adenosylmethionine Decarboxylase Activity Is Decreased in the Rat Cortex After Traumatic Brain Injury. Journal of Neurochemistry, 2002, 69, 259-265.	3.9	22
67	The Relation Between Acute Physiological Variables and Outcome on the Glasgow Outcome Scale and Disability Rating Scale Following Severe Traumatic Brain Injury. Journal of Neurotrauma, 2001, 18, 115-125.	3.4	73
68	Management of Cerebral Perfusion Pressure after Traumatic Brain Injury. Anesthesiology, 2001, 95, 1513-1517.	2.5	141
69	L-Arginine Partially Restores the Diminished CO2 Reactivity after Mild Controlled Cortical Impact Injury in the Adult Rat. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 820-828.	4.3	24
70	Brain Nitric Oxide Changes After Controlled Cortical Impact Injury in Rats. Journal of Neurophysiology, 2000, 83, 2171-2178.	1.8	113
71	The Consequences of Traumatic Brain Injury on Cerebral Blood Flow and Autoregulation: A Review. Clinical and Experimental Hypertension, 1999, 21, 299-332.	1.3	134
72	Evaluation of a New Fiberoptic Catheter for Monitoring Jugular Venous Oxygen Saturation. Neurosurgery, 1999, 44, 1280-1285.	1.1	12

#	Article	IF	CITATIONS
73	Reduction in thermal hyperalgesia by intrathecal administration of glycine and related compounds. Neurochemical Research, 1997, 22, 75-79.	3.3	31
74	Reduction in the mechanonociceptive response by intrathecal administration of glycine and related compounds. Neurochemical Research, 1996, 21, 1221-1226.	3.3	35
75	Evaluation of a regional oxygen saturation catheter for monitoring SJVO2 in head injured patients. Journal of Clinical Monitoring and Computing, 1996, 12, 285-291.	0.7	17
76	Clinical Evaluation of a Miniature Strain-Gauge Transducer for Monitoring Intracranial Pressure. Neurosurgery, 1995, 36, 1137-1141.	1.1	63
77	Cerebral metabolic management. New Horizons: an Official Publication of the Society of Critical Care Medicine, 1995, 3, 410-22.	0.1	1
78	Spectral analysis of corticomotor evoked potentials in spinal cord injury. Part 1. Acute studies. Neurological Research, 1993, 15, 367-372.	1.3	1
79	Spectral analysis of corticomotor evoked potentials in spinal cord injury. Part 2. Chronic studies. Neurological Research, 1993, 15, 373-378.	1.3	2
80	Spinal epidural corticomotor evoked potentials as a predictor of outcome from ischaemic myelopathy. Neurological Research, 1993, 15, 104-108.	1.3	5
81	Segmental Recovery of Amino Acid Neurotransmitters During Posterior Epidural Stimulation After Spinal Cord Injury. The Journal of the American Paraplegia Society, 1993, 16, 34-41.	0.5	18
82	Cerebral blood flow, arteriovenous oxygen difference, and outcome in head injured patients Journal of Neurology, Neurosurgery and Psychiatry, 1992, 55, 594-603.	1.9	155
83	Cerebral blood flow, AVDO2, and neurologic outcome in head-injured patients. Journal of Neurotrauma, 1992, 9 Suppl 1, S349-58.	3.4	4
84	Blood flow and metabolic therapy in CNS injury. Journal of Neurotrauma, 1992, 9 Suppl 2, S579-94.	3.4	1
85	Recovery of Amino Acid Neurotransmitters from the Spinal Cord During Posterior Epidural Stimulation: A Preliminary Study. The Journal of the American Paraplegia Society, 1991, 14, 3-8.	0.5	17
86	Neurophysiologic monitoring of patients with head injuries. Neurosurgery Clinics of North America, 1991, 2, 285-99.	1.7	2
87	Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord. Annals of Neurology, 1990, 27, 33-42.	5.3	367
88	Intravenous cocaine abuse and subarachnoid haemorrhage: Effect on outcome. British Journal of Neurosurgery, 1990, 4, 27-30.	0.8	31