
A Bruce Lyons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6467225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cathelicidin-3 Associated With Serum Extracellular Vesicles Enables Early Diagnosis of a Transmissible Cancer. Frontiers in Immunology, 2022, 13, 858423.	2.2	3
2	Challenges of an Emerging Disease: The Evolving Approach to Diagnosing Devil Facial Tumour Disease. Pathogens, 2022, 11, 27.	1.2	1
3	In utero exposure to diesel exhaust particles, but not silica, alters post-natal immune development and function. Chemosphere, 2021, 268, 129314.	4.2	1
4	Tasmanian devil CD28 and CTLA4 capture CD80 and CD86 from adjacent cells. Developmental and Comparative Immunology, 2021, 115, 103882.	1.0	7
5	Mesenchymal plasticity of devil facial tumour cells during in vivo vaccine and immunotherapy trials. Immunology and Cell Biology, 2021, 99, 711-723.	1.0	5
6	NLRC5 regulates expression of MHC-I and provides a target for anti-tumor immunity in transmissible cancers. Journal of Cancer Research and Clinical Oncology, 2021, 147, 1973-1991.	1.2	14
7	Cytokines: Signalling Improved Immunotherapy?. Current Oncology Reports, 2021, 23, 103.	1.8	0
8	Extracellular vesicle proteomes of two transmissible cancers of Tasmanian devils reveal tenascin-C as a serum-based differential diagnostic biomarker. Cellular and Molecular Life Sciences, 2021, 78, 7537-7555.	2.4	6
9	Post-release immune responses of Tasmanian devils vaccinated with an experimental devil facial tumour disease vaccine. Wildlife Research, 2021, 48, 701-712.	0.7	7
10	Two of a kind: transmissible Schwann cell cancers in the endangered Tasmanian devil (Sarcophilus) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
11	Curse of the devil: molecular insights into the emergence of transmissible cancers in the Tasmanian devil (Sarcophilus harrisii). Cellular and Molecular Life Sciences, 2020, 77, 2507-2525.	2.4	12
12	A Devil of a Transmissible Cancer. Tropical Medicine and Infectious Disease, 2020, 5, 50.	0.9	8
13	A novel system to map protein interactions reveals evolutionarily conserved immune evasion pathways on transmissible cancers. Science Advances, 2020, 6, .	4.7	22
14	An oral bait vaccination approach for the Tasmanian devil facial tumor diseases. Expert Review of Vaccines, 2020, 19, 1-10.	2.0	33
15	Emerging Roles for G-protein Coupled Receptors in Development and Activation of Macrophages. Frontiers in Immunology, 2019, 10, 2031.	2.2	23
16	TNF May Negatively Regulate Phagocytosis of Devil Facial Tumour Disease Cells by Activated Macrophages. Immunological Investigations, 2019, 48, 691-703.	1.0	4
17	Pregnancy protects against the pro-inflammatory respiratory responses induced by particulate matter exposure. Chemosphere, 2019, 225, 796-802.	4.2	4

18 Maternal exposure to particulate matter alters early post-natal lung function and immune cell development. Environmental Research, 2018, 164, 625-635.

13

3.7

#	Article	IF	CITATIONS
19	Transcriptome and proteome profiling reveals stress-induced expression signatures of imiquimod-treated Tasmanian devil facial tumor disease (DFTD) cells. Oncotarget, 2018, 9, 15895-15914.	0.8	13
20	Two Decades of the Impact of Tasmanian Devil Facial Tumor Disease. Integrative and Comparative Biology, 2018, 58, 1043-1054.	0.9	10
21	Absence of Tumor Necrosis Factor Supports Alternative Activation of Macrophages in the Liver after Infection with Leishmania major. Frontiers in Immunology, 2018, 9, 1.	2.2	717
22	Immunization Strategies Producing a Humoral IgG Immune Response against Devil Facial Tumor Disease in the Majority of Tasmanian Devils Destined for Wild Release. Frontiers in Immunology, 2018, 9, 259.	2.2	37
23	Heat shock proteins expressed in the marsupial Tasmanian devil are potential antigenic candidates in a vaccine against devil facial tumour disease. PLoS ONE, 2018, 13, e0196469.	1.1	6
24	An isolate of Haemophilus haemolyticus produces a bacteriocin-like substance that inhibits the growth of nontypeable Haemophilus influenzae. International Journal of Antimicrobial Agents, 2017, 49, 503-506.	1.1	20
25	Regression of devil facial tumour disease following immunotherapy in immunised Tasmanian devils. Scientific Reports, 2017, 7, 43827.	1.6	64
26	The absence of TNF permits myeloid Arginase 1 expression in experimental L. monocytogenes infection. Immunobiology, 2017, 222, 913-917.	0.8	13
27	The toll-like receptor ligands Hiltonol® (polyICLC) and imiquimod effectively activate antigen-specific immune responses in Tasmanian devils (Sarcophilus harrisii). Developmental and Comparative Immunology, 2017, 76, 352-360.	1.0	16
28	Comparative Analysis of Immune Checkpoint Molecules and Their Potential Role in the Transmissible Tasmanian Devil Facial Tumor Disease. Frontiers in Immunology, 2017, 8, 513.	2.2	19
29	PD-L1 Is Not Constitutively Expressed on Tasmanian Devil Facial Tumor Cells but Is Strongly Upregulated in Response to IFN-γ and Can Be Expressed in the Tumor Microenvironment. Frontiers in Immunology, 2016, 7, 581.	2.2	41
30	Demonstration of immune responses against devil facial tumour disease in wild Tasmanian devils. Biology Letters, 2016, 12, 20160553.	1.0	87
31	Mitogenâ€activated Tasmanian devil blood mononuclear cells kill devil facial tumour disease cells. Immunology and Cell Biology, 2016, 94, 673-679.	1.0	19
32	A second transmissible cancer in Tasmanian devils. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 374-379.	3.3	192
33	The Immunomodulatory Small Molecule Imiquimod Induces Apoptosis in Devil Facial Tumour Cell Lines. PLoS ONE, 2016, 11, e0168068.	1.1	12
34	Toll-like receptor signaling is functional in immune cells of the endangered Tasmanian devil. Developmental and Comparative Immunology, 2015, 53, 123-133.	1.0	19
35	Immunology of a Transmissible Cancer Spreading among Tasmanian Devils. Journal of Immunology, 2015, 195, 23-29.	0.4	26
36	Flow Cytometric Analysis of Cell Division by Dilution of CFSE and Related Dyes. Current Protocols in Cytometry, 2013, 64, Unit9.11.	3.7	62

#	Article	IF	CITATIONS
37	CC Chemokine Ligand 20 and Its Cognate Receptor CCR6 in Mucosal T Cell Immunology and Inflammatory Bowel Disease: Odd Couple or Axis of Evil?. Frontiers in Immunology, 2013, 4, 194.	2.2	106
38	The Use of CFSE-like Dyes for Measuring Lymphocyte Proliferation : Experimental Considerations and Biological Variables. Mathematical Modelling of Natural Phenomena, 2012, 7, 53-64.	0.9	6
39	Drug-interaction studies evaluating T-cell proliferation reveal distinct activity of dasatinib and imatinib in combination with cyclosporine A. Experimental Hematology, 2012, 40, 612-621.e6.	0.2	14
40	Natural Killer Cell Mediated Cytotoxic Responses in the Tasmanian Devil. PLoS ONE, 2011, 6, e24475.	1.1	44
41	Nilotinib inhibits the Srcâ€family kinase LCK and T ell function <i>in vitro</i> . Journal of Cellular and Molecular Medicine, 2009, 13, 599-601.	1.6	25
42	Dasatinib inhibits recombinant viral antigen-specific murine CD4+ and CD8+ T-cell responses and NK-cell cytolytic activity in vitro and in vivo. Experimental Hematology, 2009, 37, 256-265.	0.2	58
43	Human Flt-3 ligand-mobilized dendritic cells require additional activation to drive effective immune responses. Experimental Hematology, 2008, 36, 51-60.	0.2	20
44	The Src/ABL kinase inhibitor dasatinib (BMS-354825) inhibits function of normal human T-lymphocytes in vitro. Clinical Immunology, 2008, 127, 330-339.	1.4	104
45	Dasatinib suppresses in vitro natural killer cell cytotoxicity. Blood, 2008, 111, 4415-4416.	0.6	73
46	Resistance to c-KIT kinase inhibitors conferred by V654A mutation. Molecular Cancer Therapeutics, 2007, 6, 1159-1166.	1.9	81
47	Modulation of Lymphocyte Migration to the Murine Spleen after Marginal Zone Macrophage Phagocytosis of Blood-Borne Particulate Material. Immunological Investigations, 2006, 35, 75-92.	1.0	4
48	Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib. Blood, 2005, 105, 3127-3132.	0.6	266
49	In vitro sensitivity to imatinib-induced inhibition of ABL kinase activity is predictive of molecular response in patients with de novo CML. Blood, 2005, 106, 2520-2526.	0.6	135
50	Imatinib inhibits the functional capacity of cultured human monocytes. Immunology and Cell Biology, 2005, 83, 48-56.	1.0	37
51	Inhibition of c-fms by Imatinib: Expanding the Spectrum of Treatment. Cell Cycle, 2005, 4, 851-853.	1.3	48
52	Assessment of snapper (Pagrus auratus) natural IgM binding to bromelain treated sheep erythrocytes. Fish and Shellfish Immunology, 2005, 18, 91-99.	1.6	4
53	Flow Cytometric Analysis of Cell Division by Dye Dilution. Current Protocols in Cytometry, 2004, 27, Unit 9.11.	3.7	36
54	Snapper (Pagrus auratus) leucocyte proliferation is synergistically enhanced by simultaneous stimulation with LPS and PHA. Fish and Shellfish Immunology, 2004, 16, 307-319.	1.6	16

#	Article	IF	CITATIONS
55	Imatinib inhibits the in vitro development of the monocyte/macrophage lineage from normal human bone marrow progenitors. Leukemia, 2003, 17, 1713-1721.	3.3	56
56	Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) acts as a regulator of B-cell development, B-cell antigen receptor (BCR)–mediated activation, and autoimmune disease. Blood, 2002, 100, 184-193.	0.6	97
57	Chapter 17 Flow cytometric analysis of cell division history using dilution of carboxyfluorescein diacetate succinimidyl ester, a stably integrated fluorescent probe. Methods in Cell Biology, 2001, 63, 375-398.	0.5	109
58	Acquisition of immune function during the development of the Langerhans cell network in neonatal mice. Immunology, 2001, 103, 61-69.	2.0	37
59	Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. Journal of Immunological Methods, 2000, 243, 147-154.	0.6	610
60	Divided we stand: Tracking cell proliferation with carboxyfluorescein diacetate succinimidyl ester. Immunology and Cell Biology, 1999, 77, 509-515.	1.0	138
61	Cell division number regulates IgG1 and IgE switching of B cells following stimulation by CD40 ligand and IL-4. European Journal of Immunology, 1998, 28, 1040-1051.	1.6	183
62	Cell division number regulates IgG1 and IgE switching of B cells following stimulation by CD40 ligand and IL-4. , 1998, 28, 1040.		3
63	The Importance of Efficacy and Partial Agonism in Evaluating Models of B Lymphocyte Activation. International Reviews of Immunology, 1997, 15, 101-127.	1.5	20
64	Pertussis toxin pretreatment alters the in vivo cell division behaviour and survival of B lymphocytes after intravenous transfer. Immunology and Cell Biology, 1997, 75, 7-12.	1.0	20
65	The fate of self-reactive B cells depends primarily on the degree of antigen receptor engagement and availability of T cell help Journal of Experimental Medicine, 1996, 183, 2313-2328.	4.2	242
66	B cell differentiation and isotype switching is related to division cycle number Journal of Experimental Medicine, 1996, 184, 277-281.	4.2	370
67	Are murine marginal-zone macrophages the splenic white pulp analog of high endothelial venules?. European Journal of Immunology, 1995, 25, 3165-3172.	1.6	67
68	Determination of lymphocyte division by flow cytometry. Journal of Immunological Methods, 1994, 171, 131-137.	0.6	1,541
69	Alternative Pathways of Apoptosis Induced by Methylprednisolone and Valinomycin Analyzed by Flow Cytometry. Experimental Cell Research, 1993, 208, 362-370.	1.2	41
70	Simultaneous analysis of immunophenotype and apoptosis of murine thymocytes by single laser flow cytometry. Cytometry, 1992, 13, 809-821.	1.8	99
71	Discrete subpopulations, defined by CD45 isoforms, coexist within the leukaemic cells of B-chronic lymphocytic leukaemia patients. Leukemia Research, 1991, 15, 791-799.	0.4	3
72	Human Interleukin-3 inhibits the binding of granulocyte-macrophage colony-stimulating factor and interleukin-5 to basophils and strongly enhances their functional activity. Journal of Cellular Physiology, 1990, 145, 69-77.	2.0	120

#	Article	IF	CITATIONS
73	Specific binding of human interleukin-3 and granulocyte-macrophage colony-stimulating factor to human basophils. Journal of Allergy and Clinical Immunology, 1990, 85, 99-102.	1.5	30
74	A monoclonal antibody to a human mast cell/ myeloid leukaemia-specific antigen binds to normal haemopoietic progenitor cells and inhibits colony formation in vitro. Leukemia Research, 1988, 12, 929-939.	0.4	25
75	The effect of recombinant cytokines on the proliferative potential and phenotype of cells of the human myelomonocytic leukaemia line, RC-2A. Leukemia Research, 1988, 12, 659-666.	0.4	3
76	Human myeloid differentiation antigens identified by monoclonal antibodies to the myelomonocytic leukemia cell line RC-2A. Pathology, 1988, 20, 137-146.	0.3	16
77	Studies on the differentiation of the human myelomonocytic cell line RC-2A in response to lymphocyte-derived factors. Leukemia Research, 1987, 11, 797-805.	0.4	4
78	The Rose Bengal Assay for Monoclonal Antibodies to Cell Surface Antigens: Comparisons with Common Hybridoma Screening Methods. Journal of Immunoassay, 1985, 6, 325-345.	0.3	4