
Mark A Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6467076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Penetration of the Stigma and Style Elicits a Novel Transcriptome in Pollen Tubes, Pointing to Genes Critical for Growth in a Pistil. PLoS Genetics, 2009, 5, e1000621.	1.5	319
2	Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development (Cambridge), 2006, 133, 4761-4769.	1.2	276
3	Arabidopsis hapless Mutations Define Essential Gametophytic Functions. Genetics, 2004, 168, 971-982.	1.2	230
4	A Fruitful Journey: Pollen Tube Navigation from Germination to Fertilization. Annual Review of Plant Biology, 2019, 70, 809-837.	8.6	176
5	Pollen Tubes Lacking a Pair of K+ Transporters Fail to Target Ovules in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2011, 23, 81-93.	3.1	148
6	Plotting a Course. Developmental Cell, 2002, 2, 273-281.	3.1	134
7	Gamete Fusion Is Required to Block Multiple Pollen Tubes from Entering an Arabidopsis Ovule. Current Biology, 2012, 22, 1090-1094.	1.8	109
8	Three MYB Transcription Factors Control Pollen Tube Differentiation Required for Sperm Release. Current Biology, 2013, 23, 1209-1214.	1.8	94
9	Is HAP2-GCS1 an ancestral gamete fusogen?. Trends in Cell Biology, 2010, 20, 134-141.	3.6	85
10	AtPARN is an essential poly(A) ribonuclease in Arabidopsis. Gene, 2004, 328, 95-102.	1.0	61
11	Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants. Nature Plants, 2021, 7, 1143-1159.	4.7	61
12	EvolutionaryÂdiversification of the HAP2 membrane insertion motifs to drive gamete fusion across eukaryotes. PLoS Biology, 2018, 16, e2006357.	2.6	51
13	HAP2(GCS1)-Dependent Gamete Fusion Requires a Positively Charged Carboxy-Terminal Domain. PLoS Genetics, 2010, 6, e1000882.	1.5	46
14	Pollen Tube Discharge Completes the Process of Synergid Degeneration That Is Initiated by Pollen Tube-Synergid Interaction in Arabidopsis. Plant Physiology, 2015, 169, 485-496.	2.3	39
15	Speed dating, rejection, and finding the perfect mate: advice from flowering plants. Current Opinion in Plant Biology, 2013, 16, 590-597.	3.5	38
16	Expressing the Diphtheria Toxin A Subunit from the <i>HAP2</i> (<i>GCS1</i>) Promoter Blocks Sperm Maturation and Produces Single Sperm-Like Cells Capable of Fertilization. Plant Physiology, 2009, 151, 1390-1400.	2.3	35
17	On your mark, get set, GROW! LePRK2–LAT52 interactions regulate pollen tube growth. Trends in Plant Science, 2003, 8, 97-99.	4.3	34
18	The Molecular Dialog between Flowering Plant Reproductive Partners Defined by SNP-Informed RNA-Sequencing. Plant Cell, 2017, 29, 984-1006.	3.1	32

Mark A Johnson

#	Article	IF	CITATIONS
19	Sulfinylated azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils. Plant Journal, 2011, 68, 800-815.	2.8	29
20	Extracellular Guidance Cues and Intracellular Signaling Pathways that Direct Pollen Tube Growth. , 0, , 223-242.		25
21	Transporters involved in pH and K+ homeostasis affect pollen wall formation, male fertility, and embryo development. Journal of Experimental Botany, 2017, 68, 3165-3178.	2.4	24
22	Functional genomics of pollen tube–pistil interactions in Arabidopsis. Biochemical Society Transactions, 2010, 38, 593-597.	1.6	23
23	Interactions between pollen tube and pistil control pollen tube identity and sperm release in the <i>Arabidopsis</i> female gametophyte. Biochemical Society Transactions, 2014, 42, 340-345.	1.6	20
24	Pollen Tube Development. Methods in Molecular Biology, 2010, 655, 155-176.	0.4	15
25	Reprogramming the epigenome during germline and seed development. Genome Biology, 2009, 10, 232.	13.9	14
26	Analysis of XRN Orthologs by Complementation of Yeast Mutants and Localization of XRN–GFP Fusion Proteins. Methods in Enzymology, 2001, 342, 269-282.	0.4	10
27	OUP accepted manuscript. Plant Physiology, 2021, , .	2.3	9
28	Reproduction: Plant Parentage à Trois. Current Biology, 2018, 28, R28-R30.	1.8	5
29	Fertilization: Monogamy by Mutually Assured Destruction. Current Biology, 2010, 20, R571-R573.	1.8	3
30	Plant Reproduction: Teaching a New Language of Love. Current Biology, 2012, 22, R528-R529.	1.8	3
31	A rapid, inexpensive, and semi-quantitative method for determining pollen tube extension using fluorescence. Plant Methods, 2014, 10, 3.	1.9	3
32	Iterative subtraction facilitates automated, quantitative analysis of multiple pollen tube growth features. Plant Reproduction, 2019, 32, 45-54.	1.3	2
33	Preparing for explosion: Pollen tubes are capacitated by the pistil. Molecular Reproduction and Development, 2013, 80, 427-427.	1.0	1
34	mRNA Decay Machinery in Plants: Approaches and Potential Components. , 1998, , 125-133.		1
35	New Molecular Phenotypes in the dst Mutants of Arabidopsis Revealed by DNA Microarray Analysis. Plant Cell, 2001, 13, 2703.	3.1	0
36	Defects in pollen–tube differentiation prevent fertilization. Molecular Reproduction and Development, 2014, 81, 1-1.	1.0	0

#	Article	IF	CITATIONS
37	Gifu 2018: meeting of the International Association of Sexual Plant Reproduction Research. Plant Reproduction, 2019, 32, 137-139.	1.3	0