
Gerhard Kalinka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6466840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Adhesion of Plasma Nanocoatings Controls the Shear Properties of GF/Polyester Composite. Polymers, 2021, 13, 593.	4.5	8
2	Reducing the raw material usage for room temperature infusible and polymerisable thermoplastic CFRPs through reuse of recycled waste matrix material. Composites Part B: Engineering, 2021, 216, 108877.	12.0	9
3	Re-use potential of carbon fibre fabric recovered from infusible thermoplastic CFRPs in 2nd generation thermosetting-matrix composites. Composites Communications, 2021, 28, 100974.	6.3	1
4	Influence of cooling rate on the properties of carbon fiber unidirectional composites with polypropylene, polyamide 6, and polyphenylene sulfide matrices. Advanced Composite Materials, 2020, 29, 101-113.	1.9	23
5	Cellulose hydrogels physically crosslinked by glycine: Synthesis, characterization, thermal and mechanical properties. Journal of Applied Polymer Science, 2020, 137, 48380.	2.6	41
6	Experimental and numerical multiscale approach to thermally cycled FRP. Composite Structures, 2020, 244, 112303.	5.8	6
7	Tailoring the interfaces in glass fiber-reinforced photopolymer composites. Polymer, 2018, 141, 221-231.	3.8	19
8	Investigation of interfacial strength parameters in polymer matrix composites: Compatibility and reproducibility. Advanced Industrial and Engineering Polymer Research, 2018, 1, 82-92.	4.7	28
9	Circumventing boundary effects while characterizing epoxy/copper interphases using nanoindentation. Composite Interfaces, 2017, 24, 833-848.	2.3	3
10	Property and Shape Modulation of Carbon Fibers Using Lasers. ACS Applied Materials & Interfaces, 2016, 8, 16351-16358.	8.0	10
11	Photocleavable epoxy based materials. Polymer, 2015, 69, 159-168.	3.8	19
12	Coating of carbon fibers with adhesion-promoting thin poly(acrylic acid) and poly(hydroxyethylmethacrylate) layers using electrospray ionization. Journal of Adhesion Science and Technology, 2015, 29, 1628-1650.	2.6	11
13	Mechanical, electrical and microstructural characterisation of multifunctional structural power composites. Journal of Composite Materials, 2015, 49, 1823-1834.	2.4	69
14	Composition as a Means To Control Morphology and Properties of Epoxy Based Dual-Phase Structural Electrolytes. Journal of Physical Chemistry C, 2014, 118, 28377-28387.	3.1	60
15	Structural supercapacitor electrolytes based on bicontinuous ionic liquid–epoxy resin systems. Journal of Materials Chemistry A, 2013, 1, 15300.	10.3	143
16	Field Deployable Fiber Bragg Grating Strain Patch for Long-Term Stable Health Monitoring Applications. Applied Sciences (Switzerland), 2013, 3, 39-54.	2.5	8
17	Mapping local microstructure and mechanical performance around carbon nanotube grafted silica fibres: Methodologies for hierarchical composites. Nanoscale, 2011, 3, 4759.	5.6	41
18	Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Composites Science and Technology, 2010, 70, 1346-1352.	7.8	260

GERHARD KALINKA

#	Article	IF	CITATIONS
19	Creating Hierarchical Structures in Renewable Composites by Attaching Bacterial Cellulose onto Sisal Fibers. Advanced Materials, 2008, 20, 3122-3126.	21.0	121
20	Carbon fibre reinforced poly(vinylidene fluoride): Impact of matrix modification on fibre/polymer adhesion. Composites Science and Technology, 2008, 68, 1766-1776.	7.8	83
21	Hierarchical Composites Reinforced with Carbon Nanotube Grafted Fibers: The Potential Assessed at the Single Fiber Level. Chemistry of Materials, 2008, 20, 1862-1869.	6.7	312
22	Surface Modification of Natural Fibers Using Bacteria: Depositing Bacterial Cellulose onto Natural Fibers To Create Hierarchical Fiber Reinforced Nanocomposites. Biomacromolecules, 2008, 9, 1643-1651.	5.4	226
23	Fluorinated carbon fibres and their suitability as reinforcement for fluoropolymers. Composites Science and Technology, 2007, 67, 2699-2706.	7.8	42

24 Interfacial behavior between atmospheric-plasma-fluorinated carbon fibers and poly(vinylidene) Tj ETQq0 0 0 rgBT /Qyerlock 10 Tf 50 54

25	A technique for the measurement of reinforcement fibre tensile strength at sub-millimetre gauge lengths. Composites Part A: Applied Science and Manufacturing, 2001, 32, 85-90.	7.6	31
26	Viscoelastic properties of the interphase in fibre reinforced polymers - measurement and simulation. Composite Interfaces, 1998, 6, 93-101.	2.3	0
27	Characterisation of the fibre/matrix interface in reinforced polymers by the push-in technique. Composites Science and Technology, 1997, 57, 845-851.	7.8	39
28	Two-dimensional computer simulation of spherulite formation by branching lamellae. Acta Polymerica, 1997, 48, 256-261.	0.9	6
29	An advanced equipment for single-fibre pull-out test designed to monitor the fracture process. Composites, 1995, 26, 40-46.	0.7	73
30	Computer simulation of crystallization kinetics in fiber-reinforced composites. Journal of Applied Polymer Science, 1994, 51, 399-406.	2.6	30
31	Crystallization kinetics of pure and fiber-reinforced poly(phenylene sulfide). Journal of Applied Polymer Science, 1994, 51, 407-413.	2.6	54
32	Investigations on the cold crystallization of pure and filled PETP by dielectric measurements. Acta Polymerica, 1993, 44, 25-28.	0.9	8