Yugang Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/646672/publications.pdf Version: 2024-02-01

209 papers	49,237 citations	8159 76 h-index	2274 200 g-index
222	222	222	44288
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials, 2003, 15, 353-389.	11.1	8,229
2	Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science, 2002, 298, 2176-2179.	6.0	6,070
3	Polyol Synthesis of Uniform Silver Nanowires:Â A Plausible Growth Mechanism and the Supporting Evidence. Nano Letters, 2003, 3, 955-960.	4.5	1,473
4	Crystalline Silver Nanowires by Soft Solution Processing. Nano Letters, 2002, 2, 165-168.	4.5	1,436
5	Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone). Chemistry of Materials, 2002, 14, 4736-4745.	3.2	1,421
6	Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver. Chemistry - A European Journal, 2005, 11, 454-463.	1.7	1,421
7	Gold Nanocages: Synthesis, Properties, and Applications. Accounts of Chemical Research, 2008, 41, 1587-1595.	7.6	1,336
8	Langmuirâ^'Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Nano Letters, 2003, 3, 1229-1233.	4.5	1,267
9	Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process. Advanced Materials, 2002, 14, 833.	11.1	1,176
10	Synthesis of Silver Nanostructures with Controlled Shapes and Properties. Accounts of Chemical Research, 2007, 40, 1067-1076.	7.6	1,063
11	Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium. Journal of the American Chemical Society, 2004, 126, 3892-3901.	6.6	1,051
12	Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts. Chemical Reviews, 2015, 115, 10307-10377.	23.0	1,017
13	Metal Nanostructures with Hollow Interiors. Advanced Materials, 2003, 15, 641-646.	11.1	939
14	Polyol Synthesis of Silver Nanoparticles:  Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons. Nano Letters, 2004, 4, 1733-1739.	4.5	908
15	Template-Engaged Replacement Reaction:  A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors. Nano Letters, 2002, 2, 481-485.	4.5	902
16	Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nature Nanotechnology, 2006, 1, 201-207.	15.6	817
17	Inorganic Semiconductors for Flexible Electronics. Advanced Materials, 2007, 19, 1897-1916.	11.1	794
18	Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process. Nano Letters, 2003, 3, 675-679.	4.5	716

#	Article	IF	CITATIONS
19	Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials. Science, 2006, 314, 1754-1757.	6.0	632
20	Edge-terminated molybdenum disulfide with a 9.4-Ã interlayer spacing for electrochemical hydrogen production. Nature Communications, 2015, 6, 7493.	5.8	628
21	Finite deformation mechanics in buckled thin films on compliant supports. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15607-15612.	3.3	626
22	Micro- and Nanopatterning Techniques for Organic Electronic and Optoelectronic Systems. Chemical Reviews, 2007, 107, 1117-1160.	23.0	612
23	Increased Sensitivity of Surface Plasmon Resonance of Gold Nanoshells Compared to That of Gold Solid Colloids in Response to Environmental Changes. Analytical Chemistry, 2002, 74, 5297-5305.	3.2	571
24	Facile Synthesis of Sunlightâ€Ðriven AgCl:Ag Plasmonic Nanophotocatalyst. Advanced Materials, 2010, 22, 2570-2574.	11.1	549
25	Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst, The, 2003, 128, 686.	1.7	472
26	Triangular Nanoplates of Silver: Synthesis, Characterization, and Use as Sacrificial Templates For Generating Triangular Nanorings of Gold. Advanced Materials, 2003, 15, 695-699.	11.1	441
27	Reversing the size-dependence of surface plasmon resonances. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14530-14534.	3.3	408
28	Synthesis and Optical Properties of Nanorattles and Multiple-Walled Nanoshells/Nanotubes Made of Metal Alloys. Journal of the American Chemical Society, 2004, 126, 9399-9406.	6.6	400
29	Polymer Imprint Lithography with Molecular-Scale Resolution. Nano Letters, 2004, 4, 2467-2471.	4.5	398
30	One-dimension-based spatially ordered architectures for solar energy conversion. Chemical Society Reviews, 2015, 44, 5053-5075.	18.7	367
31	Polyol Synthesis of Silver Nanostructures:Â Control of Product Morphology with Fe(II) or Fe(III) Species. Langmuir, 2005, 21, 8077-8080.	1.6	354
32	Silver Nanowires Can Be Directly Coated with Amorphous Silica To Generate Well-Controlled Coaxial Nanocables of Silver/Silica. Nano Letters, 2002, 2, 427-430.	4.5	351
33	Highly Bendable, Transparent Thin-Film Transistors That Use Carbon-Nanotube-Based Conductors and Semiconductors with Elastomeric Dielectrics. Advanced Materials, 2006, 18, 304-309.	11.1	338
34	Highâ€Performance, Flexible Hydrogen Sensors That Use Carbon Nanotubes Decorated with Palladium Nanoparticles. Advanced Materials, 2007, 19, 2818-2823.	11.1	334
35	Alloying and Dealloying Processes Involved in the Preparation of Metal Nanoshells through a Galvanic Replacement Reaction. Nano Letters, 2003, 3, 1569-1572.	4.5	333
36	Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nature Photonics, 2016, 10, 473-482.	15.6	298

#	Article	lF	CITATIONS
37	Semiconductor Wires and Ribbons for High―Performance Flexible Electronics. Angewandte Chemie - International Edition, 2008, 47, 5524-5542.	7.2	279
38	Interlayer-expanded MoS 2. Materials Today, 2017, 20, 83-91.	8.3	276
39	Shape-Controlled Synthesis of Silver and Gold Nanostructures. MRS Bulletin, 2005, 30, 356-361.	1.7	272
40	Morphological and Crystalline Evolution of Nanostructured MnO ₂ and Its Application in Lithium–Air Batteries. ACS Nano, 2012, 6, 8067-8077.	7.3	266
41	Fabricating Semiconductor Nano/Microwires and Transfer Printing Ordered Arrays of Them onto Plastic Substrates. Nano Letters, 2004, 4, 1953-1959.	4.5	237
42	Enabling Colloidal Synthesis of Edge-Oriented MoS ₂ with Expanded Interlayer Spacing for Enhanced HER Catalysis. Nano Letters, 2017, 17, 1963-1969.	4.5	225
43	Multiple-Walled Nanotubes Made of Metals. Advanced Materials, 2004, 16, 264-268.	11.1	221
44	Silver nanowires – unique templates for functional nanostructures. Nanoscale, 2010, 2, 1626.	2.8	220
45	Hollowâ€Structured Materials for Thermal Insulation. Advanced Materials, 2019, 31, e1801001.	11.1	197
46	Ru Nanoframes with an fcc Structure and Enhanced Catalytic Properties. Nano Letters, 2016, 16, 2812-2817.	4.5	187
47	Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering. Chemical Society Reviews, 2013, 42, 2497-2511.	18.7	183
48	In Situ Visualization of Self-Assembly of Charged Gold Nanoparticles. Journal of the American Chemical Society, 2013, 135, 3764-3767.	6.6	183
49	Ag Nanowires Coated with Ag/Pd Alloy Sheaths and Their Use as Substrates for Reversible Absorption and Desorption of Hydrogen. Journal of the American Chemical Society, 2004, 126, 5940-5941.	6.6	177
50	Electrodeposition of Pd nanoparticles on single-walled carbon nanotubes for flexible hydrogen sensors. Applied Physics Letters, 2007, 90, 213107.	1.5	161
51	Propagation Lengths and Group Velocities of Plasmons in Chemically Synthesized Gold and Silver Nanowires. ACS Nano, 2012, 6, 472-482.	7.3	148
52	Surfactantless Synthesis of Silver Nanoplates and Their Application in SERS. Small, 2007, 3, 1964-1975.	5.2	147
53	Buckled and Wavy Ribbons of GaAs for High-Performance Electronics on Elastomeric Substrates. Advanced Materials, 2006, 18, 2857-2862.	11.1	146
54	Vertically aligned MoS ₂ on Ti ₃ C ₂ (MXene) as an improved HER catalyst. Journal of Materials Chemistry A, 2018, 6, 16882-16889.	5.2	146

#	Article	IF	CITATIONS
55	A Self-Templated Approach to TiO2 Microcapsules. Nano Letters, 2007, 7, 1832-1836.	4.5	135
56	Tailored Synthesis of Superparamagnetic Gold Nanoshells with Tunable Optical Properties. Advanced Materials, 2010, 22, 1905-1909.	11.1	128
57	Structural forms of single crystal semiconductor nanoribbons for high-performance stretchable electronics. Journal of Materials Chemistry, 2007, 17, 832.	6.7	126
58	Quantitative 3D evolution of colloidal nanoparticle oxidation in solution. Science, 2017, 356, 303-307.	6.0	125
59	Plasmonic silver incorporated silver halides for efficient photocatalysis. Journal of Materials Chemistry A, 2016, 4, 4336-4352.	5.2	121
60	Nanoscale, Electrified Liquid Jets for High-Resolution Printing of Charge. Nano Letters, 2010, 10, 584-591.	4.5	120
61	Ambient-stable tetragonal phase in silver nanostructures. Nature Communications, 2012, 3, 971.	5.8	119
62	Multichannel Charge Transfer and Mechanistic Insight in Metal Decorated 2D–2D Bi ₂ WO ₆ –TiO ₂ Cascade with Enhanced Photocatalytic Performance. Small, 2017, 13, 1702253.	5.2	117
63	Mechanics of precisely controlled thin film buckling on elastomeric substrate. Applied Physics Letters, 2007, 90, 133119.	1.5	113
64	Plasmonic/Magnetic Bifunctional Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 3158-3163.	7.2	111
65	Determination of some catechol derivatives by a flow injection electrochemiluminescent inhibition method. Talanta, 2000, 53, 661-666.	2.9	109
66	Photolithographic Route to the Fabrication of Micro/Nanowires of III-V Semiconductors. Advanced Functional Materials, 2005, 15, 30-40.	7.8	107
67	Silver nanowire/thermoplastic polyurethane elastomer nanocomposites: Thermal, mechanical, and dielectric properties. Materials & Design, 2014, 56, 398-404.	5.1	101
68	Lithium ion conducting membranes for lithium-air batteries. Nano Energy, 2013, 2, 801-816.	8.2	97
69	Conversion of Ag Nanowires to AgCl Nanowires Decorated with Au Nanoparticles and Their Photocatalytic Activity. Journal of Physical Chemistry C, 2010, 114, 2127-2133.	1.5	95
70	Monitoring of Galvanic Replacement Reaction between Silver Nanowires and HAuCl ₄ by In Situ Transmission X-ray Microscopy. Nano Letters, 2011, 11, 4386-4392.	4.5	95
71	Complete Au@ZnO core–shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis. Nanoscale, 2016, 8, 10774-10782. 	2.8	94
72	Progressive Design of Plasmonic Metal–Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis–NIRâ€Ðriven Solarâ€toâ€Chemical Conversion. Small, 2017, 13, 1602947.	5.2	88

#	Article	IF	CITATIONS
73	Single-Walled Carbon Nanotubes Modified with Pd Nanoparticles:  Unique Building Blocks for High-Performance, Flexible Hydrogen Sensors. Journal of Physical Chemistry C, 2008, 112, 1250-1259.	1.5	87
74	Highly-stable and efficient photocatalytic fuel cell based on an epitaxial TiO2/WO3/W nanothorn photoanode and enhanced radical reactions for simultaneous electricity production and wastewater treatment. Applied Energy, 2018, 220, 127-137.	5.1	87
75	Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Research, 2016, 9, 2284-2293.	5.8	80
76	Interfaced heterogeneous nanodimers. National Science Review, 2015, 2, 329-348.	4.6	79
77	Printed Arrays of Aligned GaAs Wires for Flexible Transistors, Diodes, and Circuits on Plastic Substrates. Small, 2006, 2, 1330-1334.	5.2	76
78	Microfluidic Synthesis Enables Dense and Uniform Loading of Surfactantâ€Free PtSn Nanocrystals on Carbon Supports for Enhanced Ethanol Oxidation. Angewandte Chemie - International Edition, 2016, 55, 4952-4956.	7.2	73
79	Bendable GaAs metal-semiconductor field-effect transistors formed with printed GaAs wire arrays on plastic substrates. Applied Physics Letters, 2005, 87, 083501.	1.5	70
80	Hierarchical Ru-doped sodium vanadium fluorophosphates hollow microspheres as a cathode of enhanced superior rate capability and ultralong stability for sodium-ion batteries. Nano Energy, 2017, 31, 64-73.	8.2	70
81	Gigahertz operation in flexible transistors on plastic substrates. Applied Physics Letters, 2006, 88, 183509.	1.5	67
82	Separation of anodic peaks of ascorbic acid and dopamine at an α-alanine covalently modified glassy carbon electrode. Analyst, The, 2001, 126, 1760-1763.	1.7	65
83	Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates. International Journal of Solids and Structures, 2008, 45, 2014-2023.	1.3	65
84	In Situ Synchrotron Xâ€Ray Techniques for Realâ€Time Probing of Colloidal Nanoparticle Synthesis. Particle and Particle Systems Characterization, 2013, 30, 399-419.	1.2	65
85	Revealing mechanism responsible for structural reversibility of single-crystal VO2 nanorods upon lithiation/delithiation. Nano Energy, 2017, 36, 197-205.	8.2	65
86	A low-cost photoelectrochemical tandem cell for highly-stable and efficient solar water splitting. Nano Energy, 2017, 41, 225-232.	8.2	62
87	Visualizing Redox Dynamics of a Single Ag/AgCl Heterogeneous Nanocatalyst at Atomic Resolution. ACS Nano, 2016, 10, 3738-3746.	7.3	61
88	Direct Growth of Dense, Pristine Metal Nanoplates with Well-Controlled Dimensions on Semiconductor Substrates. Chemistry of Materials, 2007, 19, 5845-5847.	3.2	59
89	Quantumâ€Sized Metal Catalysts for Hotâ€Electronâ€Driven Chemical Transformation. Advanced Materials, 2018, 30, e1802082.	11.1	55
90	Interfaced Metal Heterodimers in the Quantum Size Regime. Nano Letters, 2013, 13, 3958-3964.	4.5	53

#	Article	IF	CITATIONS
91	A Generic Approach for the Synthesis of Dimer Nanoclusters and Asymmetric Nanoassemblies. Journal of the American Chemical Society, 2013, 135, 2213-2221.	6.6	53
92	Hierarchically 3D Porous Ag Nanostructures Derived from Silver Benzenethiolate Nanoboxes: Enabling CO ₂ Reduction with a Near-Unity Selectivity and Mass-Specific Current Density over 500 A/g. Nano Letters, 2020, 20, 2806-2811.	4.5	53
93	Processing dependent behavior of soft imprint lithography on the 1-10-nm scale. IEEE Nanotechnology Magazine, 2006, 5, 301-308.	1.1	52
94	Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering. Nano Letters, 2016, 16, 715-720.	4.5	50
95	Highly Asymmetric, Interfaced Dimers Made of Au Nanoparticles and Bimetallic Nanoshells: Synthesis and Photoâ€Enhanced Catalysis. Advanced Functional Materials, 2014, 24, 2828-2836.	7.8	47
96	Synthesis of Outâ€ofâ€Substrate Au–Ag Nanoplates with Enhanced Stability for Catalysis. Angewandte Chemie - International Edition, 2009, 48, 6824-6827.	7.2	46
97	Singleâ€Crystal Silicon Membranes with High Lithium Conductivity and Application in Lithiumâ€Air Batteries. Advanced Materials, 2011, 23, 4947-4952.	11.1	46
98	Concaving AgI sub-microparticles for enhanced photocatalysis. Nano Energy, 2014, 9, 204-211.	8.2	45
99	Graphene formed on SiC under various environments: comparison of Si-face and C-face. Journal Physics D: Applied Physics, 2012, 45, 154001.	1.3	44
100	Multiple‣tep Phase Transformation in Silver Nanoplates Under High Pressure. Small, 2011, 7, 606-611.	5.2	43
101	Metal Nanoplates on Semiconductor Substrates. Advanced Functional Materials, 2010, 20, 3646-3657.	7.8	41
102	Synthesis of Silver Nanocubes in a Hydrophobic Binary Organic Solvent. Chemistry of Materials, 2010, 22, 6272-6279.	3.2	41
103	Electron beam induced evolution in Au, Ag, and interfaced heterogeneous Au/Ag nanoparticles. Nanoscale, 2015, 7, 13687-13693.	2.8	41
104	Birnessite-Type MnO ₂ Nanosheets with Layered Structures Under High Pressure: Elimination of Crystalline Stacking Faults and Oriented Laminar Assembly. Small, 2015, 11, 300-305.	5.2	41
105	Quantifying Electrocatalytic Reduction of CO2 on Twin Boundaries. CheM, 2020, 6, 3007-3021.	5.8	41
106	Imaging of complex density in silver nanocubes by coherent x-ray diffraction. New Journal of Physics, 2010, 12, 035019.	1.2	40
107	Surface chemistry: a non-negligible parameter in determining optical properties of small colloidal metal nanoparticles. Physical Chemistry Chemical Physics, 2011, 13, 11814.	1.3	40
108	Ternary Silver Halide Nanocrystals. Accounts of Chemical Research, 2017, 50, 1754-1761.	7.6	40

#	Article	IF	CITATIONS
109	In Situ Synchrotron Xâ€ray Characterization Shining Light on the Nucleation and Growth Kinetics of Colloidal Nanoparticles. Angewandte Chemie - International Edition, 2019, 58, 8987-8995.	7.2	40
110	Study of electrochemiluminescence of lucigenin at glassy carbon electrodes in NaOH solution. Journal of Luminescence, 2001, 92, 205-211.	1.5	39
111	Real-Time Probing of the Synthesis of Colloidal Silver Nanocubes with Time-Resolved High-Energy Synchrotron X-ray Diffraction. Journal of Physical Chemistry C, 2012, 116, 11842-11847.	1.5	38
112	Stable Magnetic Hot Spots for Simultaneous Concentration and Ultrasensitive Surface-Enhanced Raman Scattering Detection of Solution Analytes. Journal of Physical Chemistry C, 2012, 116, 13329-13335.	1.5	36
113	Temperature Dependence of Epitaxial Graphene Formation on SiC(0001). Journal of Electronic Materials, 2009, 38, 718-724.	1.0	35
114	Watching nanoparticle kinetics in liquid. Materials Today, 2012, 15, 140-147.	8.3	35
115	Reduction of carbon dioxide on photoexcited nanoparticles of VIII group metals. Nanoscale, 2019, 11, 16723-16732.	2.8	35
116	Flow injection analysis of pyrogallol with enhanced electrochemiluminescent detection. Analytica Chimica Acta, 2000, 423, 247-253.	2.6	33
117	Morphology of graphene on SiC(0001 \hat{A}) surfaces. Applied Physics Letters, 2009, 95, 073101.	1.5	33
118	Covalent Modification of Glassy Carbon Electrodes with .BETAAlanine for Voltammetric Separation of Dopamine and Ascorbic Acid Analytical Sciences, 2001, 17, 939-943.	0.8	32
119	Fluorescence studies of electrospun MEH-PPV/PEO nanofibers. Synthetic Metals, 2009, 159, 1454-1459.	2.1	31
120	Ripening of bimodally distributed AgCl nanoparticles. Journal of Materials Chemistry, 2011, 21, 11644.	6.7	29
121	Enhancement of coherent X-ray diffraction from nanocrystals by introduction of X-ray optics. Optics Express, 2003, 11, 2329.	1.7	28
122	Shaped gold and silver nanoparticles. Frontiers of Materials Science, 2011, 5, 1-24.	1.1	27
123	Deformation Twinning of a Silver Nanocrystal under High Pressure. Nano Letters, 2015, 15, 7644-7649.	4.5	27
124	Top-Down Fabrication of Semiconductor Nanowires with Alternating Structures along their Longitudinal and Transverse Axes. Small, 2005, 1, 1052-1057.	5.2	25
125	Hollow AgI:Ag Nanoframes as Solar Photocatalysts for Hydrogen Generation from Water Reduction. ChemSusChem, 2013, 6, 1931-1937.	3.6	25
126	Quantitatively in Situ Imaging Silver Nanowire Hollowing Kinetics. Nano Letters, 2016, 16, 6555-6559.	4.5	25

#	Article	IF	CITATIONS
127	Facile tuning of superhydrophobic states with Ag nanoplates. Nano Research, 2008, 1, 292-302.	5.8	24
128	Formation of Oxides and Their Role in the Growth of Ag Nanoplates on GaAs Substrates. Langmuir, 2008, 24, 11928-11934.	1.6	24
129	Silver chlorobromide nanocubes with significantly improved uniformity: synthesis and assembly into photonic crystals. Journal of Materials Chemistry C, 2015, 3, 58-65.	2.7	24
130	Mesoporous Colloidal Superparticles of Platinumâ€Group Nanocrystals with Surfactantâ€Free Surfaces and Enhanced Heterogeneous Catalysis. Advanced Functional Materials, 2015, 25, 1638-1647.	7.8	23
131	Nanophase Evolution at Semiconductor/Electrolyte Interface in Situ Probed by Time-Resolved High-Energy Synchrotron X-ray Diffraction. Nano Letters, 2010, 10, 3747-3753.	4.5	22
132	Photocatalytic hot-carrier chemistry. MRS Bulletin, 2020, 45, 20-25.	1.7	21
133	Lightâ€Driven Dry Reforming of Methane on Metal Catalysts. Solar Rrl, 2021, 5, 2000507.	3.1	21
134	Recombination rates for single colloidal quantum dots near a smooth metal film. Physical Chemistry Chemical Physics, 2009, 11, 5867.	1.3	20
135	Silver chlorobromide nanoparticles with highly pure phases: synthesis and characterization. Journal of Materials Chemistry A, 2013, 1, 6786.	5.2	20
136	Reversible Modulation of Surface Plasmons in Gold Nanoparticles Enabled by Surface Redox Chemistry. Angewandte Chemie - International Edition, 2015, 54, 8948-8951.	7.2	20
137	Quantitative determination of fragmentation kinetics and thermodynamics of colloidal silver nanowires by in situ high-energy synchrotron X-ray diffraction. Nanoscale, 2014, 6, 365-370.	2.8	19
138	Surface chemistry of quantum-sized metal nanoparticles under light illumination. Chemical Science, 2021, 12, 1227-1239.	3.7	19
139	Three-electron reversible redox for a high-energy fluorophosphate cathode: Na ₃ V ₂ O ₂ (PO ₄) ₂ F. Chemical Communications, 2019, 55, 3979-3982.	2.2	18
140	Inhibition of luminol and lucigenin chemiluminescence by reducing organic compounds. Luminescence, 1999, 14, 175-182.	1.5	17
141	Flow Injection Analysis of Tannic Acid with Inhibited Electrochemiluminescent Detection. Analytical Letters, 2000, 33, 2281-2291.	1.0	17
142	Geometry and surface state effects on the mechanical response of Au nanostructures. International Journal of Materials Research, 2004, 95, 416-424.	0.8	16
143	Comparative Study on the Growth of Silver Nanoplates on GaAs Substrates by Electron Microscopy, Synchrotron X-ray Diffraction, and Optical Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 8928-8938.	1.5	16
144	Significant enhancement of photocatalytic water splitting enabled by elimination of surface traps in Pt-tipped CdSe nanorods. Nanoscale, 2016, 8, 18621-18625.	2.8	16

#	Article	IF	CITATIONS
145	Selective Transfer Coupling of Nitrobenzene to Azoxybenzene on Rh Nanoparticle Catalyst Promoted by Photoexcited Hot Electrons. ChemNanoMat, 2019, 5, 1000-1007.	1.5	16
146	Promoting photocatalytic multiple-electron reduction in aerobic solutions using Au-tipped CdSe nanorod clusters. Chemical Communications, 2014, 50, 1411.	2.2	15
147	Superior Capacitive Performance Enabled by Edge-Oriented and Interlayer-Expanded MoS ₂ Nanosheets Anchored on Reduced Graphene Oxide Sheets. Industrial & Engineering Chemistry Research, 2018, 57, 4571-4576.	1.8	15
148	Geometric Symmetry of Dielectric Antenna Influencing Light Absorption in Quantum-Sized Metal Nanocrystals: A Comparative Study. Frontiers in Chemistry, 2018, 6, 494.	1.8	15
149	Enhanced optical absorption in semiconductor nanoparticles enabled by nearfield dielectric scattering. Nano Research, 2017, 10, 1292-1301.	5.8	14
150	Enabling selective aerobic oxidation of alcohols to aldehydes by hot electrons in quantum-sized Rh nanocubes. Materials Today Energy, 2018, 10, 15-22.	2.5	14
151	A novel chemiluminescent method for the determination of salicylic acid in bactericidal solutions. Analytical and Bioanalytical Chemistry, 2002, 372, 601-604.	1.9	13
152	In Situ Techniques for Probing Kinetics and Mechanism of Hollowing Nanostructures through Direct Chemical Transformations. Small Methods, 2018, 2, 1800165.	4.6	13
153	Microwave synthesis of single-phase nanoparticles made of multi-principal element alloys. Nano Research, 2022, 15, 4886-4892.	5.8	13
154	Laser-Driven Growth of Silver Nanoplates on p-Type GaAs Substrates and Their Surface-Enhanced Raman Scattering Activity. Journal of Physical Chemistry C, 2009, 113, 6061-6067.	1.5	12
155	Synthesis of Ag Nanoplates on GaAs Wafers: Evidence for Growth Mechanism. Journal of Physical Chemistry C, 2010, 114, 857-863.	1.5	12
156	Thermal transformation of δ-MnO2 nanoflowers studied by in-situ TEM. Science China Chemistry, 2012, 55, 2346-2352.	4.2	12
157	Directionally assembled MoS ₂ with significantly expanded interlayer spacing: a superior anode material for high-rate lithium-ion batteries. Materials Chemistry Frontiers, 2018, 2, 1441-1448.	3.2	12
158	Superstructured magnesium hydroxide sulfate hydrate fibres. Solid State Sciences, 2001, 3, 151-156.	0.8	11
159	Structure and Magnetism Evolution from FeCo Nanoparticles to Hollow Nanostructure Conversion for Magnetic Applications. ACS Applied Nano Materials, 2018, 1, 5837-5842.	2.4	11
160	One stone, two birds: silica nanospheres significantly increase photocatalytic activity and colloidal stability of photocatalysts. Nano Futures, 2018, 2, 015003.	1.0	10
161	An extreme-condition model for quantifying growth kinetics of colloidal metal nanoparticles. Nano Research, 2019, 12, 1339-1345.	5.8	10
162	Reprint of "Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates―[In. J. Solids Struct. 45 (2008) 2014–2023]. International Journal of Solids and Structures, 2008, 45, 3858-3867.	1.3	9

#	Article	IF	CITATIONS
163	Effects of visible and synchrotron x-ray radiation on the growth of silver nanoplates on n-GaAs wafers: A comparative study. Applied Physics Letters, 2008, 92, 183109.	1.5	9
164	Enhanced photocatalysis by hybrid hierarchical assembly of plasmonic nanocrystals with high surface areas. Catalysis Today, 2014, 225, 177-184.	2.2	9
165	Synthesis of PtAu Alloy Nanocrystals in Micelle Nanoreactors Enabled by Flash Heating and Cooling. Particle and Particle Systems Characterization, 2018, 35, 1700413.	1.2	9
166	Mesoporous SiO2 Nanoparticles: A Unique Platform Enabling Sensitive Detection of Rare Earth Ions with Smartphone Camera. Nano-Micro Letters, 2018, 10, 55.	14.4	9
167	Promoting reactivity of photoexcited hot electrons in small-sized plasmonic metal nanoparticles that are supported on dielectric nanospheres. Journal of Chemical Physics, 2020, 152, 084706.	1.2	9
168	Silica-coating-assisted nitridation of TiO2 nanoparticles and their photothermal property. Nano Research, 2021, 14, 3228-3233.	5.8	9
169	Synthesis and characterization of metal nanostructures with hollow interiors. , 2003, 5221, 164.		8
170	Growth of silver nanowires on GaAs wafers. Nanoscale, 2011, 3, 2247.	2.8	8
171	In situ high-energy synchrotron X-ray diffraction revealing precipitation reaction kinetics of silver ions with mixed halide ions. Journal of Materials Chemistry C, 2015, 3, 7492-7498.	2.7	8
172	Ternary silver chlorobromide nanocrystals: intrinsic influence of size and morphology on photocatalytic activity. Materials Chemistry Frontiers, 2017, 1, 1534-1540.	3.2	8
173	Highly Dispersed Palladium Nanoparticles on Silica Spheres for Photocatalytic Hydrodeoxygenation of Vanillin. Journal of Physical Chemistry C, 2021, 125, 16550-16556.	1.5	8
174	Encapsulation of superparamagnetic Fe3O4@SiO2 core/shell nanoparticles in MnO2 microflowers with high surface areas. Chinese Chemical Letters, 2015, 26, 233-237.	4.8	7
175	Interfaced Ag/Cu nanostructures derived from metal thiolate nanoplates: A highly selective catalyst for electrochemical reduction of CO ₂ to ethanol. SmartMat, 2022, 3, 173-182.	6.4	7
176	Synthesis of Gold Nanoshells and Their Use in Sensing Applications. Materials Research Society Symposia Proceedings, 2003, 776, 271.	0.1	6
177	Anion replacement in silver chlorobromide nanocubes: two distinct hollowing mechanisms. Materials Chemistry Frontiers, 2020, 4, 524-531.	3.2	6
178	Highly Dispersed RuOOH Nanoparticles on Silica Spheres: An Efficient Photothermal Catalyst for Selective Aerobic Oxidation of Benzyl Alcohol. Nano-Micro Letters, 2020, 12, 41.	14.4	6
179	Shape-Controlled Synthesis of Gold and Silver Nanoparticles ChemInform, 2003, 34, no.	0.1	5
180	Exceptional enhancement of Raman scattering on silver chlorobromide nanocube photonic crystals: chemical and photonic contributions. Journal of Materials Chemistry C, 2015, 3, 2455-2461.	2.7	5

#	Article	IF	CITATIONS
181	Silver Chlorobromide Nanocubes: A Class of Reactive Templates for Synthesizing Nanoplates and Nanocages of Silver Thiolates. MRS Advances, 2019, 4, 2087-2094.	0.5	4
182	Anomalous small-angle X-ray scattering for materials chemistry. Trends in Chemistry, 2021, 3, 1045-1060.	4.4	4
183	Microfluidic Synthesis Enables Dense and Uniform Loading of Surfactantâ€Free PtSn Nanocrystals on Carbon Supports for Enhanced Ethanol Oxidation. Angewandte Chemie, 2016, 128, 5036-5040.	1.6	3
184	Tessellating tiny tetrahedrons. Science, 2018, 362, 1354-1355.	6.0	3
185	In Situ Synchrotron Xâ€ray Characterization Shining Light on the Nucleation and Growth Kinetics of Colloidal Nanoparticles. Angewandte Chemie, 2019, 131, 9083-9091.	1.6	3
186	Synthesis and Optical Properties of Silver Bicrystalline Nanowires. , 2002, , .		2
187	Highlights of the Faraday Discussion on Nanoparticle Synthesis and Assembly, Argonne, USA, April 2015. Chemical Communications, 2015, 51, 13725-13730.	2.2	2
188	Plasmonic Particles - Now Tailored to Your Needs. Particle and Particle Systems Characterization, 2017, 34, 1700103.	1.2	2
189	Hollow Nanostructures. ChemNanoMat, 2020, 6, 1419-1420.	1.5	2
190	Polymer-mediated synthesis of metal nanostructures. , 2003, 5224, 43.		1
191	Tubes, Ribbons and Wires for Flexible Electronics. International Power Modulator Symposium and High-Voltage Workshop, 2006, , .	0.0	1
192	Nano- and Microstructured Semiconductor Materials for Macroelectronics. , 2007, , 375-400.		1
193	Field-assisted self-assembly process: general discussion. Faraday Discussions, 2015, 181, 463-479.	1.6	1
194	Deciphering Catalytic Selectivity on Uneven Terraces. CheM, 2021, 7, 281-282.	5.8	1
195	Metal Nanowires Synthesized by Solution-Phase Methods. , 2003, , 211-234.		1
196	Poly(acrylic acid) enabling the synthesis of highly uniform silica nanoparticles of subâ€100 nm. ChemNanoMat, 0, , .	1.5	1
197	Nanowires by solution-phase synthesis. , 2002, , .		0

198 Materials and patterning techniques for macroelectronics. , 0, , .

0

#	Article	IF	CITATIONS
199	Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver. ChemInform, 2006, 37, no.	0.1	0
200	Semiconductors: Progressive Design of Plasmonic Metal–Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis–NIRâ€Đriven Solarâ€ŧoâ€Chemical Conversion (Small 14/2017). Small, 2017, 13	,5.2 ,•	0
201	Photocatalysis: Quantum-Sized Metal Catalysts for Hot-Electron-Driven Chemical Transformation (Adv. Mater. 48/2018). Advanced Materials, 2018, 30, 1870366.	11.1	Ο
202	Continuous-Flow Synthesis of Thermochromic M-Phase VO2 Particles via Rapid One-Step Hydrothermal Reaction: Effect of Mixers. Journal of Nanomaterials, 2019, 2019, 1-10.	1.5	0
203	Regioselective Magneto-optical Heteronanorods Enabling Chiroptical Activity. Chemical Research in Chinese Universities, 2020, 36, 490-491.	1.3	Ο
204	Simulated annealing fitting: a global optimization method for quantitatively analyzing growth kinetics of colloidal Ag nanoparticles. Nanoscale Horizons, 2021, 6, 568-573.	4.1	0
205	Metal Nanostructures. , 2008, , 2105-2115.		Ο
206	Semiconductor Nanowires. , 2008, , 3896-3900.		0
207	(Invited) Quantum-Sized Metal Nanoparticles: Bridging Photons and Chemical Transformations. ECS Meeting Abstracts, 2019, , .	0.0	Ο
208	Back Cover Image: Volume 3 Issue 1. SmartMat, 2022, 3, .	6.4	0
209	Geometry and surface state effects on the mechanical response of Au nanostructures. International	0.1	0