Nicholas S Tolwinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6466617/publications.pdf

Version: 2024-02-01

218592 197736 2,821 54 26 49 citations h-index g-index papers 71 71 71 3777 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Wnt Signaling Rescues Amyloid Beta-Induced Gut Stem Cell Loss. Cells, 2022, 11, 281.	1.8	6
2	A non-canonical Raf function is required for dorsal–ventral patterning during Drosophila embryogenesis. Scientific Reports, 2022, 12, 7684.	1.6	0
3	LipidClock: A Lipid-Based Predictor of Biological Age. Frontiers in Aging, 2022, 3, .	1.2	3
4	Shared signaling pathways in Alzheimer's and metabolic disease may point to new treatment approaches. FEBS Journal, 2021, 288, 3855-3873.	2.2	19
5	Optogenetic approaches for understanding homeostatic and degenerative processes in Drosophila. Cellular and Molecular Life Sciences, 2021, 78, 5865-5880.	2.4	4
6	A high throughput drug screening paradigm using transgenic Caenorhabditis elegans model of Alzheimer's disease. Translational Medicine of Aging, 2020, 4, 11-21.	0.6	6
7	An Optogenetic Method to Study Signal Transduction in Intestinal Stem Cell Homeostasis. Journal of Molecular Biology, 2020, 432, 3159-3176.	2.0	16
8	Drug synergy as a strategy for compression of morbidity in a Caenorhabditis elegans model of Alzheimer's disease. GeroScience, 2020, 42, 849-856.	2.1	10
9	Application of optogenetic Amyloid- \hat{l}^2 distinguishes between metabolic and physical damages in neurodegeneration. ELife, 2020, 9, .	2.8	31
10	Use of Optogenetic Amyloid- \hat{l}^2 to Monitor Protein Aggregation in Drosophila melanogaster, Danio rerio and Caenorhabditis elegans. Bio-protocol, 2020, 10, e3856.	0.2	8
11	WNT Signaling in Disease. Cells, 2019, 8, 826.	1.8	157
12	Metabolic stress is a primary pathogenic event in transgenic Caenorhabditis elegans expressing pan-neuronal human amyloid beta. ELife, 2019, 8, .	2.8	55
13	Importance of miRNA stability and alternative primary miRNA isoforms in gene regulation during Drosophila development. ELife, 2018, 7, .	2.8	33
14	Drug Synergy Slows Aging and Improves Healthspan through IGF and SREBP Lipid Signaling. Developmental Cell, 2018, 47, 67-79.e5.	3.1	60
15	A novel vibration-induced exercise paradigm improves fitness and lipid metabolism of Caenorhabditis elegans. Scientific Reports, 2018, 8, 9420.	1.6	11
16	Modeling the Role of Wnt Signaling in Human and Drosophila Stem Cells. Genes, 2018, 9, 101.	1.0	15
17	An embryonic system to assess direct and indirect Wnt transcriptional targets. Scientific Reports, 2017, 7, 11092.	1.6	4
18	â€~Lnc'â€ing Wnt in female reproductive cancers: therapeutic potential of long nonâ€coding RNAs in Wnt signalling. British Journal of Pharmacology, 2017, 174, 4684-4700.	2.7	62

#	Article	IF	Citations
19	Ras is Required for Toll Signaling in the Drosophila Embryo. Mechanisms of Development, 2017, 145, S84.	1.7	О
20	Membrane Targeting of Disheveled Can Bypass the Need for Arrow/LRP5. Scientific Reports, 2017, 7, 6934.	1.6	3
21	Coupling optogenetics and light-sheet microscopy, a method to study Wnt signaling during embryogenesis. Scientific Reports, 2017, 7, 16636.	1.6	33
22	Introduction: Drosophilaâ€"A Model System for Developmental Biology. Journal of Developmental Biology, 2017, 5, 9.	0.9	48
23	Epidermal Growth Factor Pathway Signaling in Drosophila Embryogenesis: Tools for Understanding Cancer. Cancers, 2017, 9, 16.	1.7	29
24	Decoding temporal interpretation of the morphogen Bicoid in the early Drosophila embryo. ELife, 2017, 6, .	2.8	84
25	Ptk7 and Mcc, Unfancied Components in Non-Canonical Wnt Signaling and Cancer. Cancers, 2016, 8, 68.	1.7	28
26	Developmental Drift and the Role of Wnt Signaling in Aging. Cancers, 2016, 8, 73.	1.7	49
27	The Role of Mitochondrial Non-Enzymatic Protein Acylation in Ageing. PLoS ONE, 2016, 11, e0168752.	1.1	25
28	Wnt pathway activation by ADP-ribosylation. Nature Communications, 2016, 7, 11430.	5.8	61
29	Membrane Bound GSK-3 Activates Wnt Signaling through Disheveled and Arrow. PLoS ONE, 2015, 10, e0121879.	1.1	9
30	The many roles of PTK7: A versatile regulator of cell–cell communication. Archives of Biochemistry and Biophysics, 2012, 524, 71-76.	1.4	91
31	Complex Interactions between GSK3 and aPKC in Drosophila Embryonic Epithelial Morphogenesis. PLoS ONE, 2011, 6, e18616.	1.1	31
32	PTK7/Otk interacts with Wnts and inhibits canonical Wnt signalling. EMBO Journal, 2011, 30, 3729-3740.	3.5	113
33	GSK3β affects apical–basal polarity and cell–cell adhesion by regulating aPKC levels. Developmental Dynamics, 2010, 239, 115-125.	0.8	38
34	Spatially defined Dsh–Lgl interaction contributes to directional tissue morphogenesis. Journal of Cell Science, 2010, 123, 3157-3165.	1.2	35
35	Spatially defined Dsh–Lgl interaction contributes to directional tissue morphogenesis. Development (Cambridge), 2010, 137, e1-e1.	1.2	0
36	Frequent Unanticipated Alleles of <i>lethal giant larvae</i> in Drosophila Second Chromosome Stocks. Genetics, 2009, 182, 407-410.	1.2	28

#	Article	IF	CITATIONS
37	Epithelial Polarity: Interactions Between Junctions and Apical–Basal Machinery. Genetics, 2009, 183, 897-904.	1.2	30
38	Membrane Bound Axin Is Sufficient for Wingless Signaling in Drosophila Embryos. Genetics, 2009, 181, 1169-1173.	1.2	11
39	Wnt signaling pathways meet Rho GTPases. Genes and Development, 2009, 23, 265-277.	2.7	324
40	Reptin and Pontin function antagonistically with PcG and TrxG complexes to mediate Hox gene control. EMBO Reports, 2008, 9, 260-266.	2.0	49
41	An insect symbiosis is influenced by bacterium-specific polymorphisms in outer-membrane protein A. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15088-15093.	3.3	86
42	New Advances in Signaling and Pattern Formation. Fly, 2007, 1, 116-117.	0.9	1
43	Wnt, Hedgehog and Junctional Armadillo/ \hat{l}^2 -Catenin Establish Planar Polarity in the Drosophila Embryo. PLoS ONE, 2006, 1, e9.	1.1	42
44	A nuclear escort for \hat{l}^2 -catenin. Nature Cell Biology, 2004, 6, 579-580.	4.6	23
45	Rethinking WNT signaling. Trends in Genetics, 2004, 20, 177-181.	2.9	134
46	A Nuclear Function for Armadillo/β-Catenin. PLoS Biology, 2004, 2, e95.	2.6	83
47	Wg/Wnt Signal Can Be Transmitted through Arrow/LRP5,6 and Axin Independently of Zw3/Gsk3β Activity. Developmental Cell, 2003, 4, 407-418.	3.1	278
48	Pharmacologic Inhibitors of MKK1 and MKK2. Methods in Enzymology, 2001, 332, 417-431.	0.4	54
49	Armadillo nuclear import is regulated by cytoplasmic anchor Axin and nuclear anchor dTCF/Pan. Development (Cambridge), 2001, 128, 2107-2117.	1.2	105
50	Nuclear Localization of Mitogen-activated Protein Kinase Kinase 1 (MKK1) Is Promoted by Serum Stimulation and G2-M Progression. Journal of Biological Chemistry, 1999, 274, 6168-6174.	1.6	67
51	Extracellular Signal-Regulated Kinase Activates Topoisomerase $\hat{ll}\pm through$ a Mechanism Independent of Phosphorylation. Molecular and Cellular Biology, 1999, 19, 3551-3560.	1.1	104
52	Activation of the MKK/ERK Pathway during Somatic Cell Mitosis: Direct Interactions of Active ERK with Kinetochores and Regulation of the Mitotic 3F3/2 Phosphoantigen. Journal of Cell Biology, 1998, 142, 1533-1545.	2.3	217
53	Hyaluronidase Generates a Single-Cell Suspension from Cultured Mouse Lung Epithelial Cells. BioTechniques, 1997, 22, 856-860.	0.8	1
54	Drug Synergy Slows Ageing and Improves Health Span through TGFF and SREBP Lipid Signaling. SSRN Electronic Journal, 0, , .	0.4	0