## Juan Rafael Orozco-Arroyave

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6466524/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Automatic detection of Parkinson's disease in running speech spoken in three different languages.<br>Journal of the Acoustical Society of America, 2016, 139, 481-500.                                | 0.5 | 151       |
| 2  | Multimodal Assessment of Parkinson's Disease: A Deep Learning Approach. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1618-1630.                                                       | 3.9 | 126       |
| 3  | Characterization Methods for the Detection of Multiple Voice Disorders: Neurological, Functional, and Laryngeal Diseases. IEEE Journal of Biomedical and Health Informatics, 2015, 19, 1820-1828.     | 3.9 | 96        |
| 4  | How language flows when movements don't: An automated analysis of spontaneous discourse in<br>Parkinson's disease. Brain and Language, 2016, 162, 19-28.                                              | 0.8 | 89        |
| 5  | NeuroSpeech: An open-source software for Parkinson's speech analysis. , 2018, 77, 207-221.                                                                                                            |     | 72        |
| 6  | Towards an automatic evaluation of the dysarthria level of patients with Parkinson's disease. Journal of Communication Disorders, 2018, 76, 21-36.                                                    | 0.8 | 72        |
| 7  | Analysis of speaker recognition methodologies and the influence of kinetic changes to automatically<br>detect Parkinson's Disease. Applied Soft Computing Journal, 2018, 62, 649-666.                 | 4.1 | 71        |
| 8  | Deep Learning Approach to Parkinson's Disease Detection Using Voice Recordings and Convolutional<br>Neural Network Dedicated to Image Classification. , 2019, 2019, 717-720.                          |     | 57        |
| 9  | Analysis and evaluation of handwriting in patients with Parkinson's disease using kinematic,<br>geometrical, and non-linear features. Computer Methods and Programs in Biomedicine, 2019, 173, 43-52. | 2.6 | 52        |
| 10 | Convolutional Neural Network to Model Articulation Impairments in Patients with Parkinson's<br>Disease. , 0, , .                                                                                      |     | 47        |
| 11 | Characterisation of voice quality of Parkinson's disease using differential phonological posterior<br>features. Computer Speech and Language, 2017, 46, 196-208.                                      | 2.9 | 46        |
| 12 | Multi-channel spectrograms for speech processing applications using deep learning methods. Pattern<br>Analysis and Applications, 2021, 24, 423-431.                                                   | 3.1 | 46        |
| 13 | Hilbert spectrum analysis for automatic detection and evaluation of Parkinson's speech. Biomedical<br>Signal Processing and Control, 2020, 61, 102050.                                                | 3.5 | 38        |
| 14 | Non-negative matrix factorization-based time-frequency feature extraction of voice signal for<br>Parkinson's disease prediction. Computer Speech and Language, 2021, 69, 101216.                      | 2.9 | 35        |
| 15 | Spectral and cepstral analyses for Parkinson's disease detection in Spanish vowels and words. Expert<br>Systems, 2015, 32, 688-697.                                                                   | 2.9 | 34        |
| 16 | Towards an automatic monitoring of the neurological state of Parkinson's patients from speech. , 2016, , .                                                                                            |     | 31        |
| 17 | Parkinson's Disease and Aging: Analysis of Their Effect in Phonation and Articulation of Speech.<br>Cognitive Computation, 2017, 9, 731-748.                                                          | 3.6 | 28        |
| 18 | Analysis of Speech from People with Parkinson's Disease through Nonlinear Dynamics. Lecture Notes<br>in Computer Science, 2013, , 112-119.                                                            | 1.0 | 24        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | From discourse to pathology: Automatic identification of Parkinson's disease patients via morphological measures across three languages. Cortex, 2020, 132, 191-205.                            | 1.1 | 24        |
| 20 | An algorithm for Parkinson's disease speech classification based on isolated words analysis. Health<br>Information Science and Systems, 2021, 9, 32.                                            | 3.4 | 24        |
| 21 | Nonlinear Dynamics for Hypernasality Detection in Spanish Vowels and Words. Cognitive Computation, 2013, 5, 448-457.                                                                            | 3.6 | 21        |
| 22 | Nonlinear dynamics characterization of emotional speech. Neurocomputing, 2014, 132, 126-135.                                                                                                    | 3.5 | 21        |
| 23 | Principal component analysis of the spectrogram of the speech signal: Interpretation and application to dysarthric speech. Computer Speech and Language, 2020, 59, 114-122.                     | 2.9 | 21        |
| 24 | Machine learning based analysis of speech dimensions in functional oropharyngeal dysphagia.<br>Computer Methods and Programs in Biomedicine, 2021, 208, 106248.                                 | 2.6 | 21        |
| 25 | Automatic Detection of Parkinsonâ $\in$ $^{ m Ms}$ Disease Based on Modulated Vowels. , 0, , .                                                                                                  |     | 21        |
| 26 | Multi-view representation learning via gcca for multimodal analysis of Parkinson's disease. , 2017, , .                                                                                         |     | 19        |
| 27 | Cepstral Analysis and Hilbert-Huang Transform for Automatic Detection of Parkinson's Disease. Tecno<br>Lógicas, 2020, 23, 93-108.                                                               | 0.1 | 15        |
| 28 | <i>Apkinson</i> : the smartphone application for telemonitoring Parkinson's patients through speech, gait and hands movement. Neurodegenerative Disease Management, 2020, 10, 137-157.          | 1.2 | 14        |
| 29 | Parkinsonâ $€$ ™s Disease Progression Assessment from Speech Using GMM-UBM. , 0, , .                                                                                                            |     | 14        |
| 30 | Convolutional Neural Networks and a Transfer Learning Strategy to Classify Parkinson's Disease<br>from Speech in Three Different Languages. Lecture Notes in Computer Science, 2019, , 697-706. | 1.0 | 14        |
| 31 | Nonlinear dynamics and Poincaré sections to model gait impairments in different stages of<br>Parkinson's disease. Nonlinear Dynamics, 2020, 100, 3253-3276.                                     | 2.7 | 13        |
| 32 | A machine learning perspective on the emotional content of Parkinsonian speech. Artificial<br>Intelligence in Medicine, 2021, 115, 102061.                                                      | 3.8 | 13        |
| 33 | Perceptual Analysis of Speech Signals from People with Parkinson's Disease. Lecture Notes in<br>Computer Science, 2013, , 201-211.                                                              | 1.0 | 13        |
| 34 | Automatic detection of Parkinson's disease using noise measures of speech. , 2013, , .                                                                                                          |     | 11        |
| 35 | Transfer learning helps to improve the accuracy to classify patients with different speech disorders in different languages. Pattern Recognition Letters, 2021, 150, 272-279.                   | 2.6 | 10        |
| 36 | Glottal Flow Patterns Analyses for Parkinson's Disease Detection: Acoustic and Nonlinear<br>Approaches. Lecture Notes in Computer Science, 2016, , 400-407.                                     | 1.0 | 9         |

JUAN RAFAEL

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Automatic assessment of voice signals according to the GRBAS scale using modulation spectra, Mel frequency Cepstral Coefficients and Noise parameters. , 2013, , .                                    |     | 8         |
| 38 | Natural Language Analysis to Detect Parkinson's Disease. Lecture Notes in Computer Science, 2019, ,<br>82-90.                                                                                         | 1.0 | 8         |
| 39 | Phonation and Articulation Analysis of Spanish Vowels for Automatic Detection of Parkinson's<br>Disease. Lecture Notes in Computer Science, 2014, , 374-381.                                          | 1.0 | 8         |
| 40 | Nonlinear Dynamics for Hypernasality Detection. Lecture Notes in Computer Science, 2011, , 207-214.                                                                                                   | 1.0 | 8         |
| 41 | Effective detection of abnormal gait patterns in Parkinson's disease patients using kinematics, nonlinear, and stability gait features. Human Movement Science, 2022, 81, 102891.                     | 0.6 | 8         |
| 42 | Evaluation of wavelet measures on automatic detection of emotion in noisy and telephony speech signals. , 2014, , .                                                                                   |     | 7         |
| 43 | New Cues in Low-Frequency of Speech for Automatic Detection of Parkinson's Disease. Lecture Notes<br>in Computer Science, 2013, , 283-292.                                                            | 1.0 | 7         |
| 44 | An investigation about the relationship between dysarthria level of speech and the neurological state of Parkinson's patients. Biocybernetics and Biomedical Engineering, 2022, 42, 710-726.          | 3.3 | 7         |
| 45 | Articulation and Empirical Mode Decomposition Features in Diadochokinetic Exercises for the Speech<br>Assessment of Parkinson's Disease Patients. Lecture Notes in Computer Science, 2019, , 688-696. | 1.0 | 6         |
| 46 | Classification of emotions and evaluation of customer satisfaction from speech in real world acoustic environments. , 2022, 120, 103286.                                                              |     | 6         |
| 47 | Non-linear Dynamics Characterization from Wavelet Packet Transform for Automatic Recognition of Emotional Speech. Smart Innovation, Systems and Technologies, 2016, , 199-207.                        | 0.5 | 5         |
| 48 | Effect of acoustic conditions on algorithms to detect Parkinson's disease from speech. , 2017, , .                                                                                                    |     | 5         |
| 49 | Identity Verification in Virtual Education Using Biometric Analysis Based on Keystroke Dynamics.<br>Tecno Lógicas, 2020, 23, 197-211.                                                                 | 0.1 | 5         |
| 50 | Empirical Mode Decomposition articulation feature extraction on Parkinson's Diadochokinesia.<br>Computer Speech and Language, 2022, 72, 101322.                                                       | 2.9 | 5         |
| 51 | Global Selection of Features for Nonlinear Dynamics Characterization of Emotional Speech.<br>Cognitive Computation, 2013, 5, 517-525.                                                                 | 3.6 | 4         |
| 52 | Modulation spectra for automatic detection of Parkinson's disease. , 2014, , .                                                                                                                        |     | 4         |
| 53 | Phonological Posteriors and GRU Recurrent Units to Assess Speech Impairments of Patients with<br>Parkinson's Disease. Lecture Notes in Computer Science, 2018, , 453-461.                             | 1.0 | 4         |
| 54 | Comparison of User Models Based on GMM-UBM and I-Vectors for Speech, Handwriting, and Gait                                                                                                            |     | 4         |

Assessment of Parkinson's Disease Patients. , 2020, , .

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Is There Any Additional Information inÂaÂNeural Network Trained forÂPathological Speech<br>Classification?. Lecture Notes in Computer Science, 2021, , 435-447.                                            | 1.0 | 4         |
| 56 | Automatic Detection of Parkinson's Disease from Compressed Speech Recordings. Lecture Notes in<br>Computer Science, 2015, , 88-95.                                                                         | 1.0 | 4         |
| 57 | Automatic Personality Evaluation from Transliterations of YouTube Vlogs Using Classical and State of the art Word Embeddings. Ingenieria E Investigacion, 2022, 42, e93803.                                | 0.2 | 4         |
| 58 | Word accuracy and dynamic time warping to assess intelligibility deficits in patients with Parkinsons disease. , 2016, , .                                                                                 |     | 3         |
| 59 | Transfer Learning to Detect Parkinson's Disease from Speech In Different Languages Using<br>Convolutional Neural Networks with Layer Freezing. Lecture Notes in Computer Science, 2020, ,<br>331-339.      | 1.0 | 3         |
| 60 | Word-Embeddings and Grammar Features to Detect Language Disorders in Alzheimer's Disease Patients.<br>Tecno Lógicas, 2020, 23, 63-75.                                                                      | 0.1 | 3         |
| 61 | Automatic detection of hypernasal speech of children with cleft lip and palate from spanish vowels<br>and words using classical measures and nonlinear analysis. Revista Facultad De IngenierÃa, 2016, , . | 0.5 | 3         |
| 62 | Acoustic Characteristics of VOT in Plosive Consonants Produced by Parkinson's Patients. Lecture<br>Notes in Computer Science, 2020, , 303-311.                                                             | 1.0 | 3         |
| 63 | The phonetic footprint of Parkinson's disease. Computer Speech and Language, 2022, 72, 101321.                                                                                                             | 2.9 | 3         |
| 64 | Colombian Dialect Recognition Based on Information Extracted from Speech and Text Signals. , 2021, , .                                                                                                     |     | 3         |
| 65 | Reply to: "Does Cognitive Impairment Influence Motor Speech Performance in De Novo Parkinson's<br>Disease― Movement Disorders, 2021, 36, 2982-2983.                                                        | 2.2 | 3         |
| 66 | Design and implementation of an embedded system for real time analysis of speech from people with<br>Parkinson's disease. , 2013, , .                                                                      |     | 2         |
| 67 | Language Independent Assessment of Motor Impairments of Patients with Parkinson's Disease Using<br>i-Vectors. Lecture Notes in Computer Science, 2017, , 147-155.                                          | 1.0 | 2         |
| 68 | Phonological i-Vectors to Detect Parkinson's Disease. Lecture Notes in Computer Science, 2018, ,<br>462-470.                                                                                               | 1.0 | 2         |
| 69 | Automatic Intelligibility Assessment of Parkinson's Disease with Diadochokinetic Exercises.<br>Communications in Computer and Information Science, 2018, , 223-230.                                        | 0.4 | 2         |
| 70 | End-2-End Modeling of Speech and Gait from Patients with Parkinson's Disease: Comparison Between<br>High Quality Vs. Smartphone Data. , 2021, , .                                                          |     | 2         |
| 71 | Automatic Detection of Laryngeal Pathologies in Running Speech Based on the HMM Transformation of the Nonlinear Dynamics. Lecture Notes in Computer Science, 2013, , 136-143.                              | 1.0 | 2         |
| 72 | Disruptions of frontostriatal language functions in Parkinson's disease. , 2020, , 413-430.                                                                                                                |     | 2         |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Classification of Poverty Condition Using Natural Language Processing. Social Indicators Research, 2022, 162, 1413-1435.                                                                                | 1.4 | 2         |
| 74 | Author Profiling in Informal and Formal Language Scenarios Via Transfer Learning. Tecno Lógicas,<br>2021, 24, e2166.                                                                                    | 0.1 | 2         |
| 75 | On-line signature verification using Gaussian Mixture Models and small-sample learning strategies.<br>Revista Facultad De IngenierÃa, 2016, , .                                                         | 0.5 | 1         |
| 76 | Emotional State Modeling for the Assessment of Depression in Parkinson's Disease. Lecture Notes in<br>Computer Science, 2021, , 457-468.                                                                | 1.0 | 1         |
| 77 | Parkinson's Disease Progression Assessment from Speech Using a Mobile Device-Based Application.<br>Lecture Notes in Computer Science, 2017, , 371-379.                                                  | 1.0 | 1         |
| 78 | Articulation Analysis in the Speech of Children with Cleft Lip and Palate. Lecture Notes in Computer<br>Science, 2019, , 575-585.                                                                       | 1.0 | 1         |
| 79 | Correlación entre espacios de caracterÃsticas acústicas del habla y trastornos clÃnicos de la voz en<br>pacientes con disfagia. Tecno Lógicas, 2022, 25, e2220.                                         | 0.1 | 1         |
| 80 | Feature selection for hypernasality detection using PCA, LDA, kernel PCA and greedy kernel PCA. , 2012, , .                                                                                             |     | 0         |
| 81 | Evaluation of the effects of speech enhancement algorithms on the detection of fundamental frequency of speech. , 2014, , .                                                                             |     | 0         |
| 82 | Time Dependent ARMA for Automatic Recognition of Fear-Type Emotions in Speech. Lecture Notes in Computer Science, 2015, , 96-104.                                                                       | 1.0 | 0         |
| 83 | A new speech corpus in Spanish for speaker verification. , 2016, , .                                                                                                                                    |     | 0         |
| 84 | Automatic Classification of Energy Consumption Profiles in Processes of the Oil & Gas Industry in Colombia. Communications in Computer and Information Science, 2021, , 49-59.                          | 0.4 | 0         |
| 85 | Robust Automatic Speech Recognition for Call Center Applications. Communications in Computer and Information Science, 2021, , 72-83.                                                                    | 0.4 | 0         |
| 86 | Speaker Model to Monitor the Neurological State and the Dysarthria Level of Patients with Parkinson's Disease. Lecture Notes in Computer Science, 2017, , 272-280.                                      | 1.0 | 0         |
| 87 | Aproximante [ú̞] en contexto -ado en el habla de MedellÃn: prueba experimental para la identificación<br>automática de variantes alofónicas y su caracterización acústica. Lenguaje, 2019, 47, 514-536. | 0.1 | 0         |