Anna Morozovska

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6465746/anna-morozovska-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88 298 10,049 53 h-index g-index citations papers 6.25 316 11,034 5.1 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
298	Hypothesis learning in automated experiment: application to combinatorial materials libraries <i>Advanced Materials</i> , 2022 , e2201345	24	3
297	Phenomenological Description of Soft Phonon Spectra, Phase Diagrams, and Domain Morphology of Low-Dimensional Ferroelectric Layered Chalcogenides 2022 , 295-357		
296	Highly enhanced ferroelectricity in HfO-based ferroelectric thin film by light ion bombardment <i>Science</i> , 2022 , 376, 731-738	33.3	6
295	Nano Scale Investigations, Domain Structure, and Switching Processes of Low-Dimensional Ferroelectric Layered Chalcogenides 2022 , 275-294		
294	Flexoelectric and Piezoelectric Coupling in a Bended MoS2 Monolayer. Symmetry, 2021 , 13, 2086	2.7	1
293	Multi-objective Bayesian optimization of ferroelectric materials with interfacial control for memory and energy storage applications. <i>Journal of Applied Physics</i> , 2021 , 130, 204102	2.5	0
292	Oxygen Vacancy Injection as a Pathway to Enhancing Electromechanical Response in Ferroelectrics. <i>Advanced Materials</i> , 2021 , e2106426	24	1
291	Effect of Surface Ionic Screening on Polarization Reversal and Phase Diagrams in Thin Antiferroelectric Films for Information and Energy Storage. <i>Physical Review Applied</i> , 2021 , 16,	4.3	1
2 90	Investigating phase transitions from local crystallographic analysis based on statistical learning of atomic environments in 2D MoS2-ReS2. <i>Applied Physics Reviews</i> , 2021 , 8, 011409	17.3	1
289	Correlation Between Corrugation-Induced Flexoelectric Polarization and Conductivity of Low-Dimensional Transition Metal Dichalcogenides. <i>Physical Review Applied</i> , 2021 , 15,	4.3	1
288	Exploring Responses of Contact Kelvin Probe Force Microscopy in Triple-Cation Double-Halide Perovskites. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 12355-12365	3.8	0
287	Flexo-elastic control factors of domain morphology in core-shell ferroelectric nanoparticles: Soft and rigid shells. <i>Acta Materialia</i> , 2021 , 212, 116889	8.4	1
286	Fundamental miniaturization limits for MOSFETs with a monolayer MoS2 channel. <i>Applied Physics Letters</i> , 2021 , 119, 042102	3.4	1
285	Bayesian Inference for Materials Physics from STEM Data: The Probability Distribution of Physical Parameters from Ferroelectric Domain Wall Observations. <i>Microscopy and Microanalysis</i> , 2021 , 27, 1212	2-92514	
284	Origin of Ferroelectricity and Multiferroicity in Binary Oxide Thin Films. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2021 , 68, 273-278	3.2	2
283	Predictability as a probe of manifest and latent physics: The case of atomic scale structural, chemical, and polarization behaviors in multiferroic Sm-doped BiFeO3. <i>Applied Physics Reviews</i> , 2021 , 8, 011403	17.3	2
282	A combined theoretical and experimental study of the phase coexistence and morphotropic boundaries in ferroelectric-antiferroelectric-antiferrodistortive multiferroics. <i>Acta Materialia</i> , 2021 , 213, 116939	8.4	1

(2020-2021)

281	Causal Analysis of Parameterized Atomic HAADF-STEM Across a Doped Ferroelectric Phase Boundary. <i>Microscopy and Microanalysis</i> , 2021 , 27, 2762-2764	0.5		
280	Chiral polarization textures induced by the flexoelectric effect in ferroelectric nanocylinders. <i>Physical Review B</i> , 2021 , 104,	3.3	6	
279	Stress-induced phase transitions in nanoscale CuInP2S6. Physical Review B, 2021, 104,	3.3	1	
278	Phenomenological description of bright domain walls in ferroelectric-antiferroelectric layered chalcogenides. <i>Physical Review B</i> , 2020 , 102,	3.3	5	
277	Electric field control of three-dimensional vortex states in core-shell ferroelectric nanoparticles. <i>Acta Materialia</i> , 2020 , 200, 256-273	8.4	10	
276	Phase diagrams of single-layer two-dimensional transition metal dichalcogenides: Landau theory. <i>Physical Review B</i> , 2020 , 101,	3.3	5	
275	Ferroelectric nanocomposites: Influence of nanoparticle size distribution on electrocaloric conversion parameters 2020 ,		1	
274	Nontrivial magnetic field related phenomena in the singlelayer graphene on ferroelectric substrate (Review Article). <i>Low Temperature Physics</i> , 2020 , 46, 211-218	0.7		
273	The Influence of the Distribution Function of Ferroelectric Nanoparticles Sizes on Their Electrocaloric and Pyroelectric Properties. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2020 , 67, 2445-2453	3.2	1	
272	Strain-polarization coupling mechanism of enhanced conductivity at the grain boundaries in BiFeO3thin films. <i>Applied Materials Today</i> , 2020 , 20, 100740	6.6	4	
271	Gate-Voltage Control of Quantum Yield in Monolayer Transition-Metal Dichalcogenide. <i>Physical Review Applied</i> , 2020 , 13,	4.3	1	
270	Mesoscopic structure of mixed type domain walls in multiaxial ferroelectrics. <i>Physical Review Materials</i> , 2020 , 4,	3.2	2	
269	Phenomenological theory of defect driven flexo-chemical phenomena in ferroics. <i>Ferroelectrics</i> , 2020 , 569, 62-69	0.6	0	
268	Mesoscopic theory of defect ordering-disordering transitions in thin oxide films. <i>Scientific Reports</i> , 2020 , 10, 22377	4.9		
267	Ferroelectric Nanoparticles in a Nanocomposite. Influence of Size Distribution on Temperature Dependences of Pyroelectric and Electrocaloric Transformation. <i>M&rosistemi, Elektron Ta Akustika</i> , 2020 , 25, 27-35	0.1		
266	Controlling the domain structure of ferroelectric nanoparticles using tunable shells. <i>Acta Materialia</i> , 2020 , 183, 36-50	8.4	13	
265	Possible electrochemical origin of ferroelectricity in HfO2 thin films. <i>Journal of Alloys and Compounds</i> , 2020 , 830, 153628	5.7	36	
264	Hierarchy of domain reconstruction processes due to charged defect migration in acceptor doped ferroelectrics. <i>Acta Materialia</i> , 2020 , 184, 267-283	8.4	10	

263	Piezoelectric domain walls in van der Waals antiferroelectric CuInPSe. <i>Nature Communications</i> , 2020 , 11, 3623	17.4	20
262	Dynamic Manipulation in Piezoresponse Force Microscopy: Creating Nonequilibrium Phases with Large Electromechanical Response. <i>ACS Nano</i> , 2020 , 14, 10569-10577	16.7	7
261	Melting of spatially modulated phases at domain wall/surface junctions in antiferrodistortive multiferroics. <i>Physical Review B</i> , 2020 , 102,	3.3	5
260	Causal analysis of competing atomistic mechanisms in ferroelectric materials from high-resolution scanning transmission electron microscopy data. <i>Npj Computational Materials</i> , 2020 , 6,	10.9	10
259	Flexoinduced ferroelectricity in low-dimensional transition metal dichalcogenides. <i>Physical Review B</i> , 2020 , 102,	3.3	5
258	Strain Engineering of Ferromagnetic-Graphene-Ferroelectric Nanostructures. <i>Physical Review Applied</i> , 2020 , 14,	4.3	3
257	Bayesian inference in band excitation scanning probe microscopy for optimal dynamic model selection in imaging. <i>Journal of Applied Physics</i> , 2020 , 128, 054105	2.5	4
256	Exploring physics of ferroelectric domain walls via Bayesian analysis of atomically resolved STEM data. <i>Nature Communications</i> , 2020 , 11, 6361	17.4	7
255	Mapping gradient-driven morphological phase transition at the conductive domain walls of strained multiferroic films. <i>Physical Review B</i> , 2019 , 100,	3.3	16
254	Intrinsic structural instabilities of domain walls driven by gradient coupling: Meandering antiferrodistortive-ferroelectric domain walls in BiFeO3. <i>Physical Review B</i> , 2019 , 99,	3.3	18
253	Kinetics of interfacial microstructural variation across insulator-thermoelectric semiconductor interface and its effects on thermoelectric properties of magnesium silicide thin films. <i>Materialia</i> , 2019 , 7, 100375	3.2	
252	Building a free-energy functional from atomically resolved imaging: Atomic-scale phenomena in La-doped BiFeO3. <i>Physical Review B</i> , 2019 , 99,	3.3	9
251	Magnetic dielectric-graphene-ferroelectric system as a promising non-volatile device for modern spintronics. <i>Journal of Applied Physics</i> , 2019 , 125, 174105	2.5	4
250	Size effect of soft phonon dispersion in nanosized ferroics. <i>Physical Review B</i> , 2019 , 99,	3.3	2
249	Ferromagnetic-like behavior of BiLaFeO-KBr nanocomposites. Scientific Reports, 2019, 9, 10417	4.9	7
248	Effective flexoelectric and flexomagnetic response of ferroics. Solid State Physics, 2019, 70, 237-289	2	5
247	Giant negative electrostriction and dielectric tunability in a van der Waals layered ferroelectric. <i>Physical Review Materials</i> , 2019 , 3,	3.2	25
246	Analytical description of the size effect on pyroelectric and electrocaloric properties of ferroelectric nanoparticles. <i>Physical Review Materials</i> , 2019 , 3,	3.2	11

(2018-2019)

245	Integer quantum Hall effect in graphene channel with p-n junction at domain wall in a strained ferroelectric film. <i>Journal of Applied Physics</i> , 2019 , 125, 082525	2.5	7
244	Anomalies of phase diagrams and physical properties of antiferrodistortive perovskite oxides. <i>Journal of Alloys and Compounds</i> , 2019 , 778, 452-479	5.7	3
243	Ultrafast current imaging by Bayesian inversion. <i>Nature Communications</i> , 2018 , 9, 513	17.4	13
242	Photothermoelastic contrast in nanoscale infrared spectroscopy. <i>Applied Physics Letters</i> , 2018 , 112, 033	315025	6
241	Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures. <i>Reports on Progress in Physics</i> , 2018 , 81, 036502	14.4	93
240	Flexoelectricity induced spatially modulated phases in ferroics and liquid crystals. <i>Journal of Molecular Liquids</i> , 2018 , 267, 550-559	6	8
239	Defect-driven flexochemical coupling in thin ferroelectric films. <i>Physical Review B</i> , 2018 , 97,	3.3	31
238	Nontrivial temperature behavior of the carrier concentration in graphene on ferroelectric substrate with domain walls. <i>Acta Materialia</i> , 2018 , 155, 302-317	8.4	12
237	Rotomagnetic coupling in fine-grained multiferroic BiFeO3: Theory and experiment. <i>Physical Review B</i> , 2018 , 97,	3.3	19
236	Fixed volume effect on polar properties and phase diagrams of ferroelectric semi-ellipsoidal nanoparticles. <i>European Physical Journal B</i> , 2018 , 91, 1	1.2	5
235	Labyrinthine domains in ferroelectric nanoparticles: Manifestation of a gradient-induced morphological transition. <i>Physical Review B</i> , 2018 , 98,	3.3	24
234	Temperature behavior of graphene conductance induced by piezoelectric effect in a ferroelectric substrate. <i>Journal of Applied Physics</i> , 2018 , 124, 084103	2.5	5
233	Influence of Domain Structure in Ferroelectric Substrate on Graphene Conductance (Authors' Review). <i>Ukrainian Journal of Physics</i> , 2018 , 63, 49	0.4	6
232	Dependence of Soft Phonon Spectra on Flexoelectric Cou-pling in Ferroelectrics. <i>Ukrainian Journal of Physics</i> , 2018 , 63, 168	0.4	1
231	Nanoferroics: State-of-art, gradient-driven couplings and advanced applications (Author review). <i>Semiconductor Physics, Quantum Electronics and Optoelectronics</i> , 2018 , 21, 139-151	0.4	
230	New trends in fundamental research due to the spontaneous flexoelectric effect in nanosized and bulk ferroelectrics. <i>Ferroelectrics</i> , 2018 , 532, 67-88	0.6	3
229	Ferroelectricity induced by oxygen vacancies in relaxors with perovskite structure. <i>Physical Review B</i> , 2018 , 98,	3.3	24
228	Hidden symmetry of flexoelectric coupling. <i>Physical Review B</i> , 2018 , 98,	3.3	6

227	Control of polarization reversal temperature behavior by surface screening in thin ferroelectric films. <i>Acta Materialia</i> , 2018 , 160, 57-71	8.4	13
226	Analytical description of domain morphology and phase diagrams of ferroelectric nanoparticles. <i>Acta Materialia</i> , 2018 , 160, 109-120	8.4	20
225	Thermooptical evidence of carrier-stabilized ferroelectricity in ultrathin electrodeless films. <i>Scientific Reports</i> , 2018 , 8, 8497	4.9	5
224	Flexocoupling impact on the kinetics of polarization reversal. <i>Physical Review B</i> , 2017 , 95,	3.3	6
223	Size effects of ferroelectric and magnetoelectric properties of semi-ellipsoidal bismuth ferrite nanoparticles. <i>Journal of Alloys and Compounds</i> , 2017 , 714, 303-310	5.7	12
222	Mixed electrochemical Elerroelectric states in nanoscale ferroelectrics. <i>Nature Physics</i> , 2017 , 13, 812-818	16.2	72
221	Piezoresponse of ferroelectric films in ferroionic states: Time and voltage dynamics. <i>Applied Physics Letters</i> , 2017 , 110, 182907	3.4	13
220	Thermodynamic potential and phase diagram for multiferroic bismuth ferrite (BiFeO 3). <i>Npj Computational Materials</i> , 2017 , 3,	10.9	46
219	Self-Assembly of Organic Ferroelectrics by Evaporative Dewetting: A Case of EGlycine. <i>ACS Applied Materials & Case of EGlycine</i> , 9, 20029-20037	9.5	14
218	Flexocoupling-induced soft acoustic modes and the spatially modulated phases in ferroelectrics. <i>Physical Review B</i> , 2017 , 96,	3.3	14
217	pl Junction Dynamics Induced in a Graphene Channel by Ferroelectric-Domain Motion in the Substrate. <i>Physical Review Applied</i> , 2017 , 8,	4.3	19
216	Tuning the polar states of ferroelectric films via surface charges and flexoelectricity. <i>Acta Materialia</i> , 2017 , 137, 85-92	8.4	40
215	Hysteretic phenomena in GFET: Comprehensive theory and experiment. <i>Journal of Applied Physics</i> , 2017 , 122, 044504	2.5	5
214	Effect of surface ionic screening on the polarization reversal scenario in ferroelectric thin films: Crossover from ferroionic to antiferroionic states. <i>Physical Review B</i> , 2017 , 96,	3.3	20
213	Pressure-induced switching in ferroelectrics: Phase-field modeling, electrochemistry, flexoelectric effect, and bulk vacancy dynamics. <i>Physical Review B</i> , 2017 , 96,	3.3	34
212	Graphene Exfoliation at a Ferroelectric Domain Wall Induced by the Piezoelectric Effect: Impact on the Conductance of the Graphene Channel. <i>Physical Review Applied</i> , 2017 , 8,	4.3	13
211	Lost surface waves in nonpiezoelectric solids. <i>Physical Review B</i> , 2017 , 96,	3.3	18
210	Percolation Magnetism in Ferroelectric Nanoparticles. <i>Nanoscale Research Letters</i> , 2017 , 12, 382	5	4

209	Ferroionic states in ferroelectric thin films. <i>Physical Review B</i> , 2017 , 95,	3.3	41
208	3D polarization texture of a symmetric 4-fold flux closure domain in strained ferroelectric PbTiO3 films. <i>Journal of Materials Research</i> , 2017 , 32, 957-967	2.5	10
207	Ferroelectric Properties of Nanostructured SBTN Sol-Gel Layers. <i>Advances in Intelligent Systems and Computing</i> , 2017 , 103-108	0.4	3
206	Flexoelectric Effect Impact on the Hysteretic Dynamics of the Local Electromechanical Response of Mixed Ionic-Electronic Conductors. <i>Ukrainian Journal of Physics</i> , 2017 , 62, 326-334	0.4	1
205	Influence of elastic strain gradient on the upper limit of flexocoupling strength, spatially modulated phases, and soft phonon dispersion in ferroics. <i>Physical Review B</i> , 2016 , 94,	3.3	25
204	Self-consistent theory of nanodomain formation on nonpolar surfaces of ferroelectrics. <i>Physical Review B</i> , 2016 , 93,	3.3	10
203	Enhancement of Dielectric Properties in Epitaxial Bismuth Ferrite B ismuth Samarium Ferrite Superlattices. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600170	6.4	7
202	Spontaneous flexoelectric effect in nanosystems (topical review). Ferroelectrics, 2016, 500, 90-98	0.6	6
201	Flexocoupling impact on size effects of piezoresponse and conductance in mixed-type ferroelectric semiconductors under applied pressure. <i>Physical Review B</i> , 2016 , 94,	3.3	28
200	Topological Defects in Ferroic Materials. <i>Springer Series in Materials Science</i> , 2016 , 181-197	0.9	1
199	Room-temperature paramagnetoelectric effect in magnetoelectric multiferroics Pb(Fe1/2Nb1/2)O3 and its solid solution with PbTiO3. <i>Journal of Materials Science</i> , 2016 , 51, 5330-5342	4.3	45
198	Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy. <i>Scientific Reports</i> , 2016 , 6, 30579	4.9	32
197	Landau-Ginzburg description of anomalous properties of novel room temperature multiferroics Pb(Fe1/2Ta1/2)x(Zr0.53Ti0.47)1-xO3 and Pb(Fe1/2Nb1/2)x(Zr0.53Ti0.47)1⊠O3. <i>Journal of Applied Physics</i> , 2016 , 119, 024102	2.5	9
196	Ballistic conductivity of graphene channel with p-n junction at ferroelectric domain wall. <i>Applied Physics Letters</i> , 2016 , 108, 232902	3.4	18
195	Surface and finite size effects impact on the phase diagrams, polar, and dielectric properties of (Sr,Bi)Ta2O9 ferroelectric nanoparticles. <i>Journal of Applied Physics</i> , 2016 , 119, 204104	2.5	26
194	Flexo-chemo effect in nanoferroics as a source of critical size disappearance at size-induced phase transitions. <i>Journal of Applied Physics</i> , 2016 , 119, 094109	2.5	21
193	Quantitative lateral and vertical piezoresponse force microscopy on a PbTiO3 single crystal. <i>Journal of Applied Physics</i> , 2016 , 120, 124106	2.5	8
192	Size-effect in layered ferrielectric CuInP2S6. <i>Applied Physics Letters</i> , 2016 , 109, 172901	3.4	39

191	Extrinsic size effect of pyroelectric response of ferroelectric films. <i>Journal of Applied Physics</i> , 2016 , 120, 174102	2.5	4
190	Limits for the graphene on ferroelectric domain wall p-n-junction rectifier for different regimes of current. <i>Journal of Applied Physics</i> , 2016 , 120, 214101	2.5	10
189	Impact of Flexoelectric Effect on Electro-mechanics of Moderate Conductors 2016 , 265-283		1
188	Flexoelectricity Impact on the Domain Wall Structure and Polar Properties 2016 , 311-336		2
187	Effect of annealing on the chargeWoltage characteristics of SrBi2(TaxNb1⊠)2O9 films. <i>Physica B: Condensed Matter</i> , 2015 , 464, 1-8	2.8	4
186	Ferroelectric switching by the grounded scanning probe microscopy tip. <i>Physical Review B</i> , 2015 , 91,	3.3	15
185	Ferroelectrics. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiOlFilms. <i>Science</i> , 2015 , 348, 547-51	33.3	308
184	Finite size effects in ferroelectric-semiconductor thin films under open-circuit electric boundary conditions. <i>Journal of Applied Physics</i> , 2015 , 117, 034102	2.5	24
183	CuInPBIRoom Temperature Layered Ferroelectric. <i>Nano Letters</i> , 2015 , 15, 3808-14	11.5	184
182	Multiferroics: Focusing light on flexoelectricity. <i>Nature Nanotechnology</i> , 2015 , 10, 916-7	28.7	48
181	Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals. <i>ACS Nano</i> , 2015 , 9, 769-77	16.7	50
180	Linear antiferrodistortive-antiferromagnetic effect in multiferroics: Physical manifestations. <i>Physical Review B</i> , 2015 , 92,	3.3	12
179	Flexocoupling impact on the generalized susceptibility and soft phonon modes in the ordered phase of ferroics. <i>Physical Review B</i> , 2015 , 92,	3.3	23
178	Electroelastic fields in artificially created vortex cores in epitaxial BiFeO3 thin films. <i>Applied Physics Letters</i> , 2015 , 107, 052903	3.4	23
177	Intrinsic space charge layers and field enhancement in ferroelectric nanojunctions. <i>Applied Physics Letters</i> , 2015 , 107, 022903	3.4	3
176	Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes. <i>Journal of Applied Physics</i> , 2015 , 118, 072015	2.5	13
175	Rotomagnetic couplings influence on the magnetic properties of antiferrodistortive antiferromagnets. <i>Journal of Applied Physics</i> , 2015 , 118, 144101	2.5	8
174	Polarization reversal in organic-inorganic ferroelectric composites: Modeling and experiment. Applied Physics Letters, 2015 , 107, 142907	3.4	15

(2014-2015)

Finite-size effects of hysteretic dynamics in multilayer graphene on a ferroelectric. <i>Physical Review B</i> , 2015 , 91,	3.3	17
Electromigration and Diffusion Researches in Scanning Probe Microscopy of Solid Electrolytes. <i>Ukrainian Journal of Physics</i> , 2015 , 60, 1027-1035	0.4	
Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching. <i>Nature Physics</i> , 2014 , 10, 59-66	16.2	116
Thermotropic phase boundaries in classic ferroelectrics. <i>Nature Communications</i> , 2014 , 5, 3172	17.4	105
Electric-field induced ferromagnetic phase in paraelectric antiferromagnets. <i>Physical Review B</i> , 2014 , 89,	3.3	21
Ferroelectric domain triggers the charge modulation in semiconductors (invited). <i>Journal of Applied Physics</i> , 2014 , 116, 066817	2.5	16
Sub-critical field domain reversal in epitaxial ferroelectric films. <i>Journal of Applied Physics</i> , 2014 , 116, 124109	2.5	7
Elastic coupling between nonferroelastic domain walls. <i>Physical Review Letters</i> , 2014 , 113, 207601	7.4	9
Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface. <i>Journal of Applied Physics</i> , 2014 , 115, 054103	2.5	28
Self-consistent modeling of electrochemical strain microscopy of solid electrolytes. <i>Nanotechnology</i> , 2014 , 25, 445701	3.4	21
Direct observation of ferroelectric field effect and vacancy-controlled screening at the BiFeO3/LaxSr1-xMnO3 interface. <i>Nature Materials</i> , 2014 , 13, 1019-25	27	195
Ionic field effect and memristive phenomena in single-point ferroelectric domain switching. <i>Nature Communications</i> , 2014 , 5, 4545	17.4	41
Flexoelectricity and ferroelectric domain wall structures: Phase-field modeling and DFT calculations. <i>Physical Review B</i> , 2014 , 89,	3.3	77
Defect thermodynamics and kinetics in thin strained ferroelectric films: The interplay of possible mechanisms. <i>Physical Review B</i> , 2014 , 89,	3.3	25
Electrochemical strain microscopy of local electrochemical processes in solids: mechanism of imaging and spectroscopy in the diffusion limit. <i>Journal of Electroceramics</i> , 2014 , 32, 51-59	1.5	20
Interface control of a morphotropic phase boundary in epitaxial samarium modified bismuth ferrite superlattices. <i>Physical Review B</i> , 2014 , 90,	3.3	19
Humidity effects on tip-induced polarization switching in lithium niobate. <i>Applied Physics Letters</i> , 2014 , 104, 092908	3.4	58
Reply to Comment on Drigin of piezoelectric response under a biased scanning probe microscopy tip across a 180°L ferroelectric domain wall Physical Review B, 2014, 89,	3.3	3
	B. 2015, 91, Electromigration and Diffusion Researches in Scanning Probe Microscopy of Solid Electrolytes. Ukrainian Journal of Physics, 2015, 60, 1027-1035 Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching. Nature Physics, 2014, 10, 59-66 Thermotropic phase boundaries in classic ferroelectrics. Nature Communications, 2014, 5, 3172 Electric-field induced ferromagnetic phase in paraelectric antiferromagnets. Physical Review B, 2014, 89, Ferroelectric domain triggers the charge modulation in semiconductors (invited). Journal of Applied Physics, 2014, 116, 066817 Sub-critical field domain reversal in epitaxial ferroelectric films. Journal of Applied Physics, 2014, 116, 124109 Elastic coupling between nonferroelastic domain walls. Physical Review Letters, 2014, 113, 207601 Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface. Journal of Applied Physics, 2014, 115, 054103 Self-consistent modeling of electrochemical strain microscopy of solid electrolytes. Nanotechnology, 2014, 25, 445701 Direct observation of ferroelectric field effect and vacancy-controlled screening at the BiFeO3/LaxSr1-xMnO3 interface. Nature Materials, 2014, 13, 1019-25 Ionic field effect and memristive phenomena in single-point ferroelectric domain switching. Nature Communications, 2014, 5, 4545 Flexoelectricity and ferroelectric domain wall structures: Phase-field modeling and DFT calculations. Physical Review B, 2014, 89, Defect thermodynamics and kinetics in thin strained ferroelectric films: The interplay of possible mechanisms. Physical Review B, 2014, 89, Electrochemical strain microscopy of local electrochemical processes in solids: mechanism of imaging and spectroscopy in the diffusion limit. Journal of Electroceramics, 2014, 32, 51-59 Interface control of a morphotropic phase boundary in epitaxial samarium modified bismuth ferrite superlattices. Physical Review B, 2014, 90, Humidity effects on tip-induced polarization switching	Electromigration and Diffusion Researches in Scanning Probe Microscopy of Solid Electrolytes. Ukrainian Journal of Physics, 2015, 60, 1027-1035 Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching. Nature Physics, 2014, 10, 59-66 Thermotropic phase boundaries in classic ferroelectrics. Nature Communications, 2014, 5, 3172 Electric-field induced ferromagnetic phase in paraelectric antiferromagnets. Physical Review B, 2014, 89, Ferroelectric domain triggers the charge modulation in semiconductors (invited). Journal of Applied Physics, 2014, 116, 066817 Sub-critical field domain reversal in epitaxial ferroelectric films. Journal of Applied Physics, 2014, 116, 066817 Sub-critical field domain reversal in epitaxial ferroelectric films. Journal of Applied Physics, 2014, 116, 124109 Elastic coupling between nonferroelastic domain walls. Physical Review Letters, 2014, 113, 207601 Alisfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface. Journal of Applied Physics, 2014, 115, 054103 Self-consistent modeling of electrochemical strain microscopy of solid electrolytes. Ananotechnology, 2014, 25, 445701 Direct observation of ferroelectric field effect and vacancy-controlled screening at the BiFe03/LaxSr1-xMn03 interface. Nature Materials, 2014, 13, 1019-25 Ionic field effect and memristive phenomena in single-point ferroelectric domain switching. Nature Communications, 2014, 5, 4545 Flexoelectricity and ferroelectric domain wall structures: Phase-field modeling and DFT calculations. Physical Review B, 2014, 89, Defect thermodynamics and kinetics in thin strained ferroelectric films: The interplay of possible mechanisms. Physical Review B, 2014, 89, Electrochemical strain microscopy of local electrochemical processes in solids: mechanism of imaging and spectroscopy in the diffusion limit. Journal of Electroceramics, 2014, 32, 51-59 Linetface control of a morphotropic phase boundary in epitaxial samarium modified bismuth ferrite sup

155	Electrostrictive and electrostatic responses in contact mode voltage modulated scanning probe microscopies. <i>Applied Physics Letters</i> , 2014 , 104, 232901	3.4	37
154	Controlled mechnical modification of manganite surface with nanoscale resolution. Nanotechnology, 2014 , 25, 475302	3.4	8
153	Novel room temperature multiferroics on the base of single-phase nanostructured perovskites. Journal of Applied Physics, 2014 , 116, 054101	2.5	28
152	Nonlinear space charge dynamics in mixed ionic-electronic conductors: Resistive switching and ferroelectric-like hysteresis of electromechanical response. <i>Journal of Applied Physics</i> , 2014 , 116, 06680	8 ^{2.5}	24
151	Effect of Vegard strains on the extrinsic size effects in ferroelectric nanoparticles. <i>Physical Review B</i> , 2014 , 90,	3.3	27
150	Oxide nanomaterials with properties absent in bulk (Author Review). <i>Powder Metallurgy and Metal Ceramics</i> , 2013 , 52, 32-38	0.8	4
149	Domain Wall Conduction and Polarization-Mediated Transport in Ferroelectrics. <i>Advanced Functional Materials</i> , 2013 , 23, 2592-2616	15.6	96
148	Mechanical control of electroresistive switching. <i>Nano Letters</i> , 2013 , 13, 4068-74	11.5	48
147	Local ferroelectric properties in polyvinylidene fluoride/barium lead zirconate titanate nanocomposites: Interface effect. <i>Journal of Applied Physics</i> , 2013 , 114, 144102	2.5	11
146	Universal emergence of spatially modulated structures induced by flexoantiferrodistortive coupling in multiferroics. <i>Physical Review B</i> , 2013 , 88,	3.3	32
145	New multiferroics based on EuxSr1⊠TiO3 nanotubes and nanowires. <i>Journal of Applied Physics</i> , 2013 , 113, 024107	2.5	24
144	Effective piezoelectric response of twin walls in ferroelectrics. <i>Journal of Applied Physics</i> , 2013 , 113, 18	72252	16
143	Spatially resolved mapping of oxygen reduction/evolution reaction on solid-oxide fuel cell cathodes with sub-10 nm resolution. <i>ACS Nano</i> , 2013 , 7, 3808-14	16.7	24
142	Epitaxial Bi5Ti3FeO15-CoFe2O4 pillar-matrix multiferroic nanostructures. <i>ACS Nano</i> , 2013 , 7, 11079-86	16.7	52
141	Ferroic properties of nanosized SnO2. <i>Phase Transitions</i> , 2013 , 86, 903-909	1.3	1
140	Ferromagnetism induced by magnetic vacancies as a size effect in thin films of nonmagnetic oxides. <i>Thin Solid Films</i> , 2013 , 534, 685-692	2.2	8
139	Structural phase transitions and electronic phenomena at 180-degree domain walls in rhombohedral BaTiO3. <i>Physical Review B</i> , 2013 , 87,	3.3	43
138	Low-symmetry monoclinic ferroelectric phase stabilized by oxygen octahedra rotations in strained EuxSr1\text{\text{ITiO3}} thin films. <i>Physical Review B</i> , 2013 , 87,	3.3	16

137	Interplay of octahedral tilts and polar order in BiFeO3 films. Advanced Materials, 2013, 25, 2497-504	24	94
136	Variable temperature electrochemical strain microscopy of Sm-doped ceria. <i>Nanotechnology</i> , 2013 , 24, 145401	3.4	17
135	Ferroelectric control of the conduction at the LaAlO/SrTiOIheterointerface. <i>Advanced Materials</i> , 2013 , 25, 3357-64	24	78
134	Mesoscopic mechanism of the domain wall interaction with elastic defects in uniaxial ferroelectrics. Journal of Applied Physics, 2013 , 113, 187203	2.5	7
133	Pyroelectric origin of the carrier density modulation at graphene-ferroelectric interface. <i>Journal of Applied Physics</i> , 2013 , 114, 014101	2.5	13
132	ELECTROCHEMICAL STRAIN MICROSCOPY OF OXYGEN-ION CONDUCTORS: FUEL CELLS AND OXIDE ELECTRONICS. World Scientific Series in Nanoscience and Nanotechnology, 2013 , 253-298	0.1	1
131	Defect driven ferroelectricity and magnetism in nanocrystalline KTaO3. <i>Physica B: Condensed Matter</i> , 2012 , 407, 614-623	2.8	25
130	Domain wall geometry controls conduction in ferroelectrics. <i>Nano Letters</i> , 2012 , 12, 5524-31	11.5	103
129	Domain Wall Conduction in Ferroelectrics. Ferroelectrics, 2012, 438, 3-19	0.6	19
128	Impact of Free Charges on Polarization and Pyroelectricity in Antiferrodistortive Structures and Surfaces Induced by a Flexoelectric Effect. <i>Ferroelectrics</i> , 2012 , 438, 32-44	0.6	8
127	Top electrode size effect on hysteresis loops in piezoresponse force microscopy of Pb(Zr,Ti)O3-film on silicon structures. <i>Journal of Applied Physics</i> , 2012 , 112, 052015	2.5	6
126	Domain wall conduction in multiaxial ferroelectrics. <i>Physical Review B</i> , 2012 , 85,	3.3	85
125	Conductivity of twin-domain-wall/surface junctions in ferroelastics: Interplay of deformation potential, octahedral rotations, improper ferroelectricity, and flexoelectric coupling. <i>Physical Review B</i> , 2012 , 86,	3.3	63
124	Roto-flexoelectric coupling impact on the phase diagrams and pyroelectricity of thin SrTiO3 films. <i>Journal of Applied Physics</i> , 2012 , 112, 064111	2.5	17
123	Ionically-mediated electromechanical hysteresis in transition metal oxides. ACS Nano, 2012, 6, 7026-33	16.7	7 ²
122	Tunable metallic conductance in ferroelectric nanodomains. <i>Nano Letters</i> , 2012 , 12, 209-13	11.5	131
121	Domain growth kinetics in La0.89Sr0.11MnO3 single crystal studied by piezoresponse force microscopy. <i>Journal of Applied Physics</i> , 2012 , 112, 052019	2.5	11
120	Bichiral structure of ferroelectric domain walls driven by flexoelectricity. <i>Physical Review B</i> , 2012 , 86,	3.3	49

119	Interface dipole between two metallic oxides caused by localized oxygen vacancies. <i>Physical Review B</i> , 2012 , 86,	3.3	50
118	Interfacial polarization and pyroelectricity in antiferrodistortive structures induced by a flexoelectric effect and rotostriction. <i>Physical Review B</i> , 2012 , 85,	3.3	94
117	Exploring mesoscopic physics of vacancy-ordered systems through atomic scale observations of topological defects. <i>Physical Review Letters</i> , 2012 , 109, 065702	7.4	32
116	Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. <i>Nature Physics</i> , 2012 , 8, 81-88	16.2	271
115	Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films. <i>Physical Review B</i> , 2012 , 85,	3.3	112
114	Atomic-scale evolution of modulated phases at the ferroelectric-antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. <i>Nature Communications</i> , 2012 , 3, 775	17.4	135
113	Electrochemical strain microscopy with blocking electrodes: The role of electromigration and diffusion. <i>Journal of Applied Physics</i> , 2012 , 111, 014114	2.5	21
112	Surface polar states and pyroelectricity in ferroelastics induced by flexo-roto field. <i>Applied Physics Letters</i> , 2012 , 100, 142902	3.4	36
111	Anisotropic conductivity of uncharged domain walls in BiFeO3. <i>Physical Review B</i> , 2012 , 86,	3.3	53
110	Origin of piezoelectric response under a biased scanning probe microscopy tip across a 180? ferroelectric domain wall. <i>Physical Review B</i> , 2012 , 86,	3.3	23
109	Three-dimensional vector electrochemical strain microscopy. <i>Journal of Applied Physics</i> , 2012 , 112, 052	020 ₅	24
108	Unconventional Antiferroelectric Phase Stabilization in Thin Film BiFeO3 by Interface-Induced Rotoelectric Coupling Effect. <i>Microscopy and Microanalysis</i> , 2012 , 18, 412-413	0.5	
107	Frequency dependent dynamical electromechanical response of mixed ionic-electronic conductors. Journal of Applied Physics, 2012, 111, 014107	2.5	30
106	Untangling Coupled Order Parameters at Complex Oxide Interfaces with Aberration-Corrected STEM and EELS. <i>Microscopy and Microanalysis</i> , 2012 , 18, 318-319	0.5	1
105	Measuring oxygen reduction/evolution reactions on the nanoscale. <i>Nature Chemistry</i> , 2011 , 3, 707-13	17.6	220
104	Compositional disorder, polar nanoregions and dipole dynamics in Pb(Mg1/3Nb2/3)O3-based relaxor ferroelectrics. <i>Zeitschrift Fl Kristallographie</i> , 2011 , 226, 99-107		42
103	Linear magnetoelectric coupling and ferroelectricity induced by the flexomagnetic effect in ferroics. <i>Physical Review B</i> , 2011 , 84,	3.3	40
102	NMR study of size effects in relaxor PMN nanoparticles. <i>Physica Status Solidi (B): Basic Research</i> , 2011 , 248, 2653-2655	1.3	

101	Ferroelectricity and ferromagnetism in EuTiO3 nanowires. <i>Physical Review B</i> , 2011 , 84,	3.3	21
100	Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. <i>Physical Review B</i> , 2011 , 83,	3.3	181
99	Strain effect on phase transitions of BaTiO3 nanowires. <i>Acta Materialia</i> , 2011 , 59, 7189-7198	8.4	25
98	Probing Local and Global Ferroelectric Phase Stability and Polarization Switching in Ordered Macroporous PZT. <i>Advanced Functional Materials</i> , 2011 , 21, 941-947	15.6	23
97	Surface Domain Structures and Mesoscopic Phase Transition in Relaxor Ferroelectrics. <i>Advanced Functional Materials</i> , 2011 , 21, 1977-1987	15.6	102
96	Atomically resolved mapping of polarization and electric fields across ferroelectric/oxide interfaces by Z-contrast imaging. <i>Advanced Materials</i> , 2011 , 23, 2474-9	24	72
95	Modeling of the Nanodomain Formation in the Heterostructure BPM Tip ElectrodeIIhin Ferroelectric FilmBemiconductor Substrate [Ferroelectrics, 2011, 418, 19-27]	0.6	
94	Direct mapping of ionic transport in a Si anode on the nanoscale: time domain electrochemical strain spectroscopy study. <i>ACS Nano</i> , 2011 , 5, 9682-95	16.7	59
93	Surface-induced magnetism of the solids with impurities and vacancies. <i>Physica B: Condensed Matter</i> , 2011 , 406, 1673-1688	2.8	19
92	Structure and energetics of 180 [°] Idomain walls in PbTiO3 by density functional theory. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 175902	1.8	37
91	Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, Vegard strains, and flexoelectric effect. <i>Physical Review B</i> , 2011 , 83,	3.3	102
90	Landau-Ginzburg-Devonshire theory for electromechanical hysteresis loop formation in piezoresponse force microscopy of thin films. <i>Journal of Applied Physics</i> , 2011 , 110, 052011	2.5	20
89	Nanoscale electromechanics of paraelectric materials with mobile charges: Size effects and nonlinearity of electromechanical response of SrTiO3 films. <i>Physical Review B</i> , 2011 , 84,	3.3	64
88	Anion vacancy-driven magnetism in incipient ferroelectric SrTiO3 and KTaO3 nanoparticles. <i>Journal of Applied Physics</i> , 2011 , 109, 094105	2.5	21
87	Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. <i>Nature Nanotechnology</i> , 2010 , 5, 749-54	28.7	460
86	Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms. <i>Journal of Applied Physics</i> , 2010 , 108, 053712	2.5	131
85	Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors. <i>Physical Review B</i> , 2010 , 81,	3.3	71
84	Correlated polarization switching in the proximity of a 180 [®] domain wall. <i>Physical Review B</i> , 2010 , 82,	3.3	58

83	Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order. Journal of Applied Physics, 2010 , 107, 044101	2.5	9
82	Finite size and intrinsic field effect on the polar-active properties of ferroelectric-semiconductor heterostructures. <i>Physical Review B</i> , 2010 , 81,	3.3	55
81	Analytical prediction of size-induced ferroelectricity in BaO nanowires under stress. <i>Physical Review B</i> , 2010 , 81,	3.3	17
80	Electromechanical probing of ionic currents in energy storage materials. <i>Applied Physics Letters</i> , 2010 , 96, 222906	3.4	63
79	Correlation Radius in Thin Ferroelectric Films. Ferroelectrics, 2010, 400, 243-254	0.6	4
78	Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3 P bTiO3 solid solutions. <i>Journal of Applied Physics</i> , 2010 , 108, 042006	2.5	43
77	Phase diagram and domain splitting in thin ferroelectric films with incommensurate phase. <i>Physical Review B</i> , 2010 , 81,	3.3	21
76	Surface-induced piezomagnetic, piezoelectric, and linear magnetoelectric effects in nanosystems. <i>Physical Review B</i> , 2010 , 82,	3.3	32
75	Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. <i>ACS Nano</i> , 2010 , 4, 6071-9	16.7	135
74	Local polarization dynamics in ferroelectric materials. <i>Reports on Progress in Physics</i> , 2010 , 73, 056502	14.4	341
73	Pyroelectric response of ferroelectric nanowires: Size effect and electric energy harvesting. <i>Journal of Applied Physics</i> , 2010 , 108, 042009	2.5	60
72	Intrinsic nucleation mechanism and disorder effects in polarization switching on ferroelectric surfaces. <i>Physical Review Letters</i> , 2009 , 102, 017601	7.4	46
71	Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy. <i>Nanotechnology</i> , 2009 , 20, 395709	3.4	40
70	Misfit strain induced magnetoelectric coupling in thin ferroic films. <i>Journal of Applied Physics</i> , 2009 , 105, 084108	2.5	7
69	Surface effect on domain wall width in ferroelectrics. <i>Journal of Applied Physics</i> , 2009 , 106, 084102	2.5	50
68	General approach for the description of size effects in ferroelectric nanosystems. <i>Journal of Materials Science</i> , 2009 , 44, 5149-5160	4.3	60
67	Spatial distribution of relaxation behavior on the surface of a ferroelectric relaxor in the ergodic phase. <i>Applied Physics Letters</i> , 2009 , 95, 142902	3.4	33
66	Thermodynamics of nanodomain formation and breakdown in scanning probe microscopy: Landau-Ginzburg-Devonshire approach. <i>Physical Review B</i> , 2009 , 80,	3.3	56

65	Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. <i>Physical Review B</i> , 2009 , 79,	3.3	191
64	Domain structure formation by using Scanning Probe Microscopy: equilibrium polarization distribution and effective piezoelectric response calculations. <i>Semiconductor Physics, Quantum Electronics and Optoelectronics</i> , 2009 , 12, 116-124	0.4	1
63	Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. <i>Nature Materials</i> , 2008 , 7, 209-15	27	235
62	Effect of the intrinsic width on the piezoelectric force microscopy of a single ferroelectric domain wall. <i>Journal of Applied Physics</i> , 2008 , 103, 124110	2.5	19
61	Local polarization switching in the presence of surface-charged defects: Microscopic mechanisms and piezoresponse force spectroscopy observations. <i>Physical Review B</i> , 2008 , 78,	3.3	31
60	Giant magnetoelectric effect induced by intrinsic surface stress in ferroic nanorods. <i>Physical Review B</i> , 2008 , 77,	3.3	64
59	Nanoscale polarization profile across a 180º ferroelectric domain wall extracted by quantitative piezoelectric force microscopy. <i>Journal of Applied Physics</i> , 2008 , 104, 074110	2.5	39
58	The influence of 180º ferroelectric domain wall width on the threshold field for wall motion. <i>Journal of Applied Physics</i> , 2008 , 104, 084107	2.5	44
57	Probing the role of single defects on the thermodynamics of electric-field induced phase transitions. <i>Physical Review Letters</i> , 2008 , 100, 155703	7.4	76
56	Screening and retardation effects on 180 th domain wall motion in ferroelectrics: Wall velocity and nonlinear dynamics due to polarization-screening charge interactions. <i>Physical Review B</i> , 2008 , 78,	3.3	39
55	Domain dynamics in piezoresponse force spectroscopy: Quantitative deconvolution and hysteresis loop fine structure. <i>Applied Physics Letters</i> , 2008 , 92, 182909	3.4	21
54	Superparaelectric phase in the ensemble of noninteracting ferroelectric nanoparticles. <i>Physical Review B</i> , 2008 , 78,	3.3	46
53	Interaction of a 180º ferroelectric domain wall with a biased scanning probe microscopy tip: Effective wall geometry and thermodynamics in Ginzburg-Landau-Devonshire theory. <i>Physical Review B</i> , 2008 , 78,	3.3	38
52	Local polarization dynamics in chemical solution deposited PZT capacitors by switching spectroscopy PFM 2008 ,		1
51	Polar properties and local piezoelectric response of ferroelectric nanotubes. <i>Semiconductor Physics, Quantum Electronics and Optoelectronics</i> , 2008 , 11, 370-380	0.4	1
50	The influence of size effects on local piezoelectric response of thin films. <i>Semiconductor Physics, Quantum Electronics and Optoelectronics</i> , 2008 , 10, 36-41	0.4	1
49	The resolution function and effective response of piezoelectric thin films in Piezoresponse Force Microscopy. <i>Semiconductor Physics, Quantum Electronics and Optoelectronics</i> , 2008 , 11, 171-177	0.4	
48	Piezoresponse force spectroscopy of ferroelectric-semiconductor materials. <i>Journal of Applied Physics</i> , 2007 , 102, 114108	2.5	69

47	Investigations of LiNbO3 and LiTaO3 Single Crystals for Pyroelectric Applications in the Wide Temperature Range. <i>Ferroelectrics</i> , 2007 , 353, 202-211	0.6	5
46	Ferroelectricity enhancement in ferroelectric nanotubes. <i>Phase Transitions</i> , 2007 , 80, 71-77	1.3	22
45	Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy. <i>Annual Review of Materials Research</i> , 2007 , 37, 189-238	12.8	179
44	Resolution-function theory in piezoresponse force microscopy: Wall imaging, spectroscopy, and lateral resolution. <i>Physical Review B</i> , 2007 , 75,	3.3	89
43	Appearance of ferroelectricity in thin films of incipient ferroelectric. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 3660-3672	1.3	9
42	Influence of Built-In Internal Electric Field on Ferroelectric Film Properties and Phase Diagram. <i>Ferroelectrics</i> , 2007 , 354, 86-98	0.6	11
41	Phase transitions induced by confinement of ferroic nanoparticles. <i>Physical Review B</i> , 2007 , 76,	3.3	112
40	Size effects and depolarization field influence on the phase diagrams of cylindrical ferroelectric nanoparticles. <i>Physica B: Condensed Matter</i> , 2007 , 387, 358-366	2.8	43
39	Intrinsic single-domain switching in ferroelectric materials on a nearly ideal surface. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 20204-9	11.5	67
38	Local Polarization Switching in Piezoresponse Force Microscopy. Ferroelectrics, 2007, 354, 198-207	0.6	13
37	Recent Advances in Electromechanical Imaging on the Nanometer Scale: Polarization Dynamics in Ferroelectrics, Biopolymers, and Liquid Imaging. <i>Japanese Journal of Applied Physics</i> , 2007 , 46, 5674-568	s ^{5.4}	17
36	Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects. <i>Nanotechnology</i> , 2007 , 18, 405701	3.4	48
35	Quantitative determination of tip parameters in piezoresponse force microscopy. <i>Applied Physics Letters</i> , 2007 , 90, 212905	3.4	29
34	Extrinsic size effect in piezoresponse force microscopy of thin films. <i>Physical Review B</i> , 2007 , 76,	3.3	39
33	The piezoresponse force microscopy of surface layers and thin films: Effective response and resolution function. <i>Journal of Applied Physics</i> , 2007 , 102, 074105	2.5	46
32	Antiferroelectric thin films phase diagrams. <i>Phase Transitions</i> , 2007 , 80, 47-54	1.3	6
31	Electromechanical detection in scanning probe microscopy: Tip models and materials contrast. Journal of Applied Physics, 2007 , 102, 014109	2.5	71
30	Theoretical description of ferroelectric and pyroelectric hystereses in the disordered ferroelectric-semiconductor films. <i>Journal of Applied Physics</i> , 2006 , 100, 014109	2.5	4

(2004-2006)

29	Screening and size effects on the nanodomain tailoring in ferroelectrics semiconductors. <i>Physical Review B</i> , 2006 , 73,	3.3	20
28	Mismatch-Induced Electric Field as Reason of Self-Polarization Phenomenon and Electret State Appearance in the Strained Ultrathin Ferroelectric Films. <i>Ferroelectrics</i> , 2006 , 335, 257-268	0.6	
27	Domain nucleation and hysteresis loop shape in piezoresponse force spectroscopy. <i>Applied Physics Letters</i> , 2006 , 89, 192901	3.4	52
26	Ferroelectric thin films phase diagrams with self-polarized phase and electret state. <i>Journal of Applied Physics</i> , 2006 , 99, 114102	2.5	55
25	Materials contrast in piezoresponse force microscopy. <i>Applied Physics Letters</i> , 2006 , 88, 232904	3.4	66
24	The study of screening phenomena under the nano-domain formation in ferroelectric semiconductors. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 1996-2011	1.3	8
23	Theoretical consideration of pits recording and etching processes in chalcogenide vitreous semiconductors. <i>Optics Communications</i> , 2006 , 259, 545-552	2	2
22	Modeling of micro- and nano-scale domain recording by high-voltage atomic force microscopy in ferroelectric semiconductors. <i>Physica B: Condensed Matter</i> , 2006 , 373, 54-63	2.8	8
21	Ferroelectricity enhancement in confined nanorods: Direct variational method. <i>Physical Review B</i> , 2006 , 73,	3.3	130
20	Modelling of micro- and nanodomain arrays recorded in ferroelectrics-semiconductors by using atomic force microscopy. <i>Semiconductor Physics, Quantum Electronics and Optoelectronics</i> , 2006 , 9, 26-3	3 ^{0.4}	
19	Ferroelectric Thin Film Self-Polarization Induced by Mismatch Effect. Ferroelectrics, 2005, 317, 125-133	0.6	2
18	Ferroelectric Thin Film Properties: Peculiarities Related to Mismatch-Induced Polarization. <i>Ferroelectrics</i> , 2005 , 314, 85-95	0.6	3
17	Polarization switching in ferroelectric crystals with defects charged under photo- or UV-excitation. <i>Proceedings of SPIE</i> , 2005 , 6023, 189	1.7	
16	Phenomenological description of coercive field decrease in ferroelectric semiconductors with charged inhomogeneities. <i>Physica B: Condensed Matter</i> , 2005 , 355, 236-243	2.8	13
15	Theoretical Description of Coercive Field Decrease in Ferroelectrics-Semiconductors with Charged Defects. <i>Ferroelectrics</i> , 2005 , 317, 37-42	0.6	7
14	Phenomenological description of polarization switching in ferroelectric semiconductors with charged defects. <i>Physica Status Solidi (B): Basic Research</i> , 2005 , 242, 947-961	1.3	8
13	Phenomenological description of domain recording in ferroelectric semiconductors by using atomic force microscopy. <i>Physica Status Solidi (B): Basic Research</i> , 2005 , 242, R79-R81	1.3	9
12	The Influence of Mismatch-Induced Field on Thin Ferroelectric Film Size Effects. <i>Integrated Ferroelectrics</i> , 2004 , 64, 17-38	0.8	1

11	The internal electric field originating from the mismatch effect and its influence on ferroelectric thin film properties. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 3517-3531	1.8	104
10	Low-Temperature Pyroelectric Phenomena in Lithium Niobate Single Crystals. <i>Ferroelectrics</i> , 2004 , 298, 31-42	0.6	9
9	Modelling of dielectric hysteresis loops in ferroelectric semiconductors with charged defects. Journal of Physics Condensed Matter, 2004 , 16, 8937-8956	1.8	21
8	Modified Landau-Ginzburg-Devonshire Description of Disordered Ferroelectrics with Static Charged Defects. <i>Ferroelectrics</i> , 2004 , 298, 199-209	0.6	4
7	Surface Tension and Mismatch Effects in Ferroelectric Thin Film Properties. <i>Ferroelectrics</i> , 2004 , 298, 83-96	0.6	4
6	Light Induced Micro-Domains in Ferroelectrics. Ferroelectrics, 2003, 288, 265-275	0.6	2
5	Dynamic halo scattering in photorefractive crystals 2001,		2
4	Theoretical study of electrical oscillation effect in Sn2P2Se6 single crystals with incommensurate phase. <i>Ferroelectrics</i> , 2001 , 254, 101-111	0.6	
3	Non-stationary and relaxation processes and induced microscale polar regions in incommensurate phase of ferroelectric semiconductor Sn2P2Se6. <i>Ferroelectrics</i> , 1999 , 235, 275-285	0.6	
2	Autowave type instability in photorefractive crystals 1999,		4
1	Control of Domain States in Rhombohedral Lead Zirconate Titanate Films via Misfit Strains and Surface Charges. <i>Advanced Electronic Materials</i> ,2100386	6.4	0