
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6465161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electron-Transfer State of 9-Mesityl-10-methylacridinium Ion with a Much Longer Lifetime and Higher Energy Than That of the Natural Photosynthetic Reaction Center. Journal of the American Chemical Society, 2004, 126, 1600-1601.	6.6	565
2	Photoinduced Electron Transfer in Phytochlorinâ^'[60]Fullerene Dyads. Journal of the American Chemical Society, 1999, 121, 9378-9387.	6.6	275
3	An Extremely Small Reorganization Energy of Electron Transfer in Porphyrinâ^'Fullerene Dyad. Journal of Physical Chemistry A, 2001, 105, 1750-1756.	1.1	275
4	Charge Separation in a Nonfluorescent Donorâ´'Acceptor Dyad Derived from Boron Dipyrromethene Dye, Leading to Photocurrent Generation. Journal of Physical Chemistry B, 2005, 109, 15368-15375.	1.2	224
5	Ultrafast Photodynamics of Exciplex Formation and Photoinduced Electron Transfer in Porphyrinâ^Fullerene Dyads Linked at Close Proximity. Journal of Physical Chemistry A, 2003, 107, 8834-8844.	1.1	158
6	Exciplex Intermediates in Photoinduced Electron Transfer of Porphyrinâ^'Fullerene Dyads. Journal of the American Chemical Society, 2002, 124, 8067-8077.	6.6	148
7	Effects of meso-Diarylamino Group of Porphyrins as Sensitizers in Dye-Sensitized Solar Cells on Optical, Electrochemical, and Photovoltaic Properties. Journal of Physical Chemistry C, 2010, 114, 10656-10665.	1.5	147
8	Charge-transfer emission of compact porphyrin–fullerene dyad analyzed by Marcus theory of electron-transfer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 2229-2244.	2.0	138
9	Long-Lived Triplet Excited States of Bent-Shaped Pentacene Dimers by Intramolecular Singlet Fission. Journal of Physical Chemistry A, 2016, 120, 1867-1875.	1.1	133
10	Azobenzene-Linked Porphyrinâ^'Fullerene Dyads. Journal of the American Chemical Society, 2007, 129, 15973-15982.	6.6	112
11	Photoinduced Charge and Energy Transfer in Phthalocyanine-Functionalized Gold Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 162-168.	1.5	102
12	Effects of π-Elongation and the Fused Position of Quinoxaline-Fused Porphyrins as Sensitizers in Dye-Sensitized Solar Cells on Optical, Electrochemical, and Photovoltaic Properties. Journal of Physical Chemistry C, 2010, 114, 11293-11304.	1.5	102
13	Energy and Electron Transfer in β-Alkynyl-Linked Porphyrinâ~'[60]Fullerene Dyads. Journal of Physical Chemistry B, 2006, 110, 14155-14166.	1.2	100
14	Optical, Electrochemical, and Photovoltaic Effects of an Electron-Withdrawing Tetrafluorophenylene Bridge in a Push–Pull Porphyrin Sensitizer Used for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 14415-14424.	1.5	94
15	Remarkable Dependence of the Final Charge Separation Efficiency on the Donor–Acceptor Interaction in Photoinduced Electron Transfer. Angewandte Chemie - International Edition, 2016, 55, 629-633.	7.2	94
16	Structural photoactivation of a full-length bacterial phytochrome. Science Advances, 2016, 2, e1600920.	4.7	94
17	Photosynthetic Antennaâ^'Reaction Center Mimicry: Sequential Energy- and Electron Transfer in a Self-assembled Supramolecular Triad Composed of Boron Dipyrrin, Zinc Porphyrin and Fullerene. Journal of Physical Chemistry A, 2009, 113, 8478-8489.	1.1	93
18	Tuning the Ground-State and Excited-State Interchromophore Interactions in Porphyrinâ^'Fullerene Ï€-Stacks. Journal of Physical Chemistry B, 2004, 108, 16377-16385.	1.2	91

#	Article	IF	CITATIONS
19	Electronic energy harvesting multi BODIPY-zinc porphyrin dyads accommodating fullerene as photosynthetic composite of antenna-reaction center. Physical Chemistry Chemical Physics, 2010, 12, 7434.	1.3	87
20	Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices. Solar Energy Materials and Solar Cells, 2010, 94, 1379-1383.	3.0	78
21	Vectorial Photoinduced Electron Transfer in Phytochlorinâ^'[60]Fullerene Langmuirâ^'Blodgett Films. Journal of Physical Chemistry B, 2000, 104, 6371-6379.	1.2	75
22	Bâ€Site Coâ€Alloying with Germanium Improves the Efficiency and Stability of Allâ€Inorganic Tinâ€Based Perovskite Nanocrystal Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 22117-22125.	7.2	75
23	Multiexciton Dynamics Depending on Intramolecular Orientations in Pentacene Dimers: Recombination and Dissociation of Correlated Triplet Pairs. Journal of Physical Chemistry Letters, 2018, 9, 3354-3360.	2.1	73
24	Effects of Porphyrin Substituents on Film Structure and Photoelectrochemical Properties of Porphyrin/Fullerene Composite Clusters Electrophoretically Deposited on Nanostructured SnO ₂ Electrodes. Chemistry - A European Journal, 2007, 13, 10182-10193.	1.7	70
25	Triarylamine‧ubstituted Imidazole―and Quinoxalineâ€Fused Push–Pull Porphyrins for Dye‧ensitized Solar Cells. ChemSusChem, 2013, 6, 508-517.	3.6	70
26	LINEAR AND SECOND-ORDER NONLINEAR OPTICAL PROPERTIES OF ARRAYS OF NONCENTROSYMMETRIC GOLD NANOPARTICLES. Journal of Nonlinear Optical Physics and Materials, 2002, 11, 421-432.	1.1	69
27	Photoinduced Electron Transfer in Langmuirâ `Blodgett Monolayers of Porphyrinâ `Fullerene Dyads. Langmuir, 2005, 21, 5383-5390.	1.6	69
28	Photophysical Processes in the Complexes of DNA with Ethidium Bromide and Acridine Orange:Â A Femtosecond Study. Journal of Physical Chemistry B, 2001, 105, 535-541.	1.2	67
29	Host–Guest Interactions in the Supramolecular Incorporation of Fullerenes into Tailored Holes on Porphyrin-Modified Gold Nanoparticles in Molecular Photovoltaics. Chemistry - A European Journal, 2005, 11, 7265-7275.	1.7	66
30	Photoinduced electron transfer of double-bridged phthalocyanine–fullerene dyads. Chemical Physics Letters, 2006, 430, 36-40.	1.2	65
31	Substituent Effects of Porphyrins on Structures and Photophysical Properties of Amphiphilic Porphyrin Aggregates. Journal of Physical Chemistry B, 2008, 112, 16517-16524.	1.2	64
32	Exciplex Mediated Photoinduced Electron Transfer Reactions of Phthalocyanine-Fullerene Dyads. Journal of Physical Chemistry A, 2008, 112, 6884-6892.	1.1	62
33	Photophysics and photoelectrochemical properties of nanohybrids consisting of fullerene-encapsulated single-walled carbon nanotubes and poly(3-hexylthiophene). Energy and Environmental Science, 2011, 4, 741-750.	15.6	60
34	Photoinduced Electron Transfer in Self-Assembled Monolayers of Porphyrinâ^'Fullerene Dyads on ITO. Langmuir, 2005, 21, 6385-6391.	1.6	59
35	Sequential Photoinduced Energy and Electron Transfer Directed Improved Performance of the Supramolecular Solar Cell of a Zinc Porphyrin–Zinc Phthalocyanine Conjugate Modified TiO ₂ Surface. Journal of Physical Chemistry C, 2013, 117, 763-773.	1.5	59
36	Photoinduced electron-transfer dynamics and long-lived CS states of donor–acceptor linked dyads and a triad containing a gold porphyrin in nonpolar solvents. Chemical Physics, 2006, 326, 3-14.	0.9	56

#	Article	IF	CITATIONS
37	Preparation and Photophysical and Photoelectrochemical Properties of a Covalently Fixed Porphyrin–Chemically Converted Graphene Composite. Chemistry - A European Journal, 2012, 18, 4250-4257.	1.7	55
38	Synthesis and Photophysical Properties of Electron-Rich Perylenediimide-Fullerene Dyad. Organic Letters, 2006, 8, 4425-4428.	2.4	54
39	Ultrafast excitation transfer and charge stabilization in a newly assembled photosynthetic antenna-reaction center mimic composed of boron dipyrrin, zinc porphyrin and fullerene. Physical Chemistry Chemical Physics, 2011, 13, 18168.	1.3	53
40	Hydrogen-Bonding Effects on Film Structure and Photoelectrochemical Properties of Porphyrin and Fullerene Composites on Nanostructured TiO2Electrodes. Journal of Physical Chemistry C, 2007, 111, 13618-13626.	1.5	52
41	Ultrafast Singletâ^'Singlet Energy Transfer in Self-Assembled via Metalâ´'Ligand Axial Coordination of Free-Base Porphyrinâ´'Zinc Phthalocyanine and Free-Base Porphyrinâ´'Zinc Naphthalocyanine Dyads. Journal of Physical Chemistry A, 2010, 114, 268-277.	1.1	52
42	Effects of Carbon–Metal–Carbon Linkages on the Optical, Photophysical, and Electrochemical Properties of Phosphametallacycle-Linked Coplanar Porphyrin Dimers. Journal of the American Chemical Society, 2012, 134, 1825-1839.	6.6	50
43	C70vs. C60in zinc porphyrin–fullerene dyads: prolonged charge separation and ultrafast energy transfer from the second excited singlet state of porphyrin. Photochemical and Photobiological Sciences, 2003, 2, 251-258.	1.6	46
44	Synthesis and properties of a meso- tris–ferrocene appended zinc(ii) porphyrin and a critical evaluation of its dye sensitised solar cell (DSSC) performance. RSC Advances, 2014, 4, 22733-22742.	1.7	45
45	Role of the Bridge in Photoinduced Electron Transfer in Porphyrin–Fullerene Dyads. Chemistry - A European Journal, 2015, 21, 5814-5825.	1.7	45
46	Photoinduced Electron Transfer in 9â€Substituted 10â€Methylacridinium Ions. Chemistry - A European Journal, 2017, 23, 1306-1317.	1.7	45
47	Photoinduced Electron Transfer in Double-Bridged Porphyrinâ^'Fullerene Triads. Journal of Physical Chemistry A, 2005, 109, 4881-4890.	1.1	44
48	The photophysics of salicylic acid derivatives in aqueous solution. Journal of Physical Organic Chemistry, 2009, 22, 449-454.	0.9	44
49	Selective Formation and Efficient Photocurrent Generation of [70]Fullerene–Singleâ€Walled Carbon Nanotube Composites. Advanced Materials, 2010, 22, 1767-1770.	11.1	44
50	Direct Evidence of Significantly Different Chemical Behavior and Excitedâ€State Dynamics of 1,7―and 1,6â€Regioisomers of Pyrrolidinylâ€Substituted Perylene Diimide. Chemistry - A European Journal, 2013, 19, 6791-6806.	1.7	44
51	Efficient synthesis of highly soluble doubly-bridged porphyrin-fullerene dyad. Journal of Porphyrins and Phthalocyanines, 2003, 07, 610-616.	0.4	43
52	Excited State Intramolecular Proton Transfer in Electron-Rich and Electron-Poor Derivatives of 10-Hydroxybenzo[<i>h</i>]quinoline. Journal of Physical Chemistry A, 2012, 116, 9614-9620.	1.1	42
53	Ultrafast charge transfer in phytochlorin–[60]fullerene dyads: influence of the attachment position. Chemical Physics Letters, 2001, 345, 213-218.	1.2	41
54	Driving Force Dependence of Photoinduced Electron Transfer Dynamics of Intercalated Molecules in DNA. Journal of Physical Chemistry B, 2003, 107, 12511-12518.	1.2	41

#	Article	IF	CITATIONS
55	Arrangement of a Hydrophobically Shielded Porphyrin, 5,10,15,20-Tetrakis(3,5-di-tert-butylphenyl)porphyrin, in Octadecylamine Langmuirâ^'Blodgett Multilayers. Langmuir, 1997, 13, 3002-3008.	1.6	40
56	Large Reorganization Energy of Pyrrolidine-Substituted Perylenediimide in Electron Transfer. Journal of Physical Chemistry C, 2007, 111, 6133-6142.	1.5	40
57	Gold Nanoparticle Enhanced Charge Transfer in Thin Film Assemblies of Porphyrinâ^'Fullerene Dyads. Langmuir, 2007, 23, 13117-13125.	1.6	40
58	Photoinduced intra- and intermolecular electron transfer in solutions and in solid organized molecular assemblies. Physical Chemistry Chemical Physics, 2011, 13, 397-412.	1.3	39
59	The fluorine effect: photophysical properties of borondipyrromethene (bodipy) dyes appended at the meso position with fluorinated aryl groups. RSC Advances, 2012, 2, 4944.	1.7	39
60	Fluorescence Properties of the Chromophore-Binding Domain of Bacteriophytochrome from <i>Deinococcus radiodurans</i> . Journal of Physical Chemistry B, 2013, 117, 11049-11057.	1.2	39
61	Time-resolved fluorescence methods (IUPAC Technical Report). Pure and Applied Chemistry, 2014, 86, 1969-1998.	0.9	39
62	Chlorophylls. IX. The first phytochlorin–fullerene dyads: synthesis and conformational studies. Journal of the Chemical Society Perkin Transactions 1, 1999, , 2403-2408.	0.9	38
63	Photoinduced Electron Transfer in CdSe/ZnS Quantum Dot–Fullerene Hybrids. Journal of Physical Chemistry C, 2015, 119, 17561-17572.	1.5	38
64	<i>meso</i> â€3,5â€Bis(trifluoromethyl)phenylâ€5ubstituted Expanded Porphyrins: Synthesis, Characterization, and Optical, Electrochemical, and Photophysical Properties. Chemistry - an Asian Journal, 2008, 3, 2065-2074.	1.7	37
65	Self-Assembled Porphyrins on Modified Zinc Oxide Nanorods: Development of Model Systems for Inorganic–Organic Semiconductor Interface Studies. Journal of Physical Chemistry C, 2012, 116, 2336-2343.	1.5	37
66	The Role of the Exciplex State in Photoinduced Electron Transfer of Phytochlorinâ^'[60]Fullerene Dyads. Journal of Physical Chemistry A, 2002, 106, 8029-8038.	1.1	36
67	Drastic Difference in Lifetimes of the Charge-Separated State of the Formanilideâ``Anthraquinone Dyad versus the Ferroceneâ`'Formanilideâ``Anthraquinone Triad and Their Photoelectrochemical Properties of the Composite Films with Fullerene Clusters. Journal of Physical Chemistry A, 2005, 109, 4662-4670.	1.1	36
68	Photoinduced Electron Transfer in Langmuirâ^'Blodgett Monolayers of Double-Linked Phthalocyanineâ^'Fullerene Dyads. Journal of Physical Chemistry C, 2008, 112, 9896-9902.	1.5	35
69	Excited State Intramolecular Proton Transfer in π-Expanded Phenazine-Derived Phenols. Journal of Physical Chemistry A, 2014, 118, 144-151.	1.1	35
70	High‥ield Excited Triplet States in Pentacene Selfâ€Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission. Angewandte Chemie - International Edition, 2016, 55, 5230-5234.	7.2	35
71	Critical role and modification of surface states in hematite films for enhancing oxygen evolution activity. Journal of Materials Research, 2018, 33, 455-466.	1.2	35
72	Hydrogen Bonding Effects on the Surface Structure and Photoelectrochemical Properties of Nanostructured SnO2Electrodes Modified with Porphyrin and Fullerene Composites. Journal of Physical Chemistry B, 2005, 109, 18465-18474.	1.2	34

#	Article	IF	CITATIONS
73	Carbon Nanotube Wiring of Donor–Acceptor Nanograins by Selfâ€Assembly and Efficient Charge Transport. Angewandte Chemie - International Edition, 2011, 50, 4615-4619.	7.2	34
74	Molecular interactions on single-walled carbon nanotubes revealed by high-resolution transmission microscopy. Nature Communications, 2015, 6, 7732.	5.8	33
75	Porphyrin–fullerene dyad with a long linker: formation of charge transfer conformer in Langmuir–Blodgett film. Chemical Physics Letters, 2002, 366, 245-252.	1.2	32
76	Photoinduced electron transfer in multilayer self-assembled structures of porphyrins and porphyrin–fullerene dyads on ITO. Journal of Materials Chemistry, 2005, 15, 4546.	6.7	32
77	Synthesis, Conformational Interconversion, and Photophysics of Tethered Porphyrin–Fullerene Dyads with Parachute Topology. Chemistry - A European Journal, 2009, 15, 7698-7705.	1.7	32
78	Photophysics of Fe(III)–tartrate and Fe(III)–citrate complexes in aqueous solutions. Chemical Physics Letters, 2012, 530, 45-48.	1.2	32
79	Excited-State Interaction of Red and Green Perylene Diimides with Luminescent Ru(II) Polypyridine Complex. Inorganic Chemistry, 2013, 52, 9761-9773.	1.9	32
80	Quantitative Sequential Photoenergy Conversion Process from Singlet Fission to Intermolecular Two-Electron Transfers Utilizing Tetracene Dimer. ACS Energy Letters, 2019, 4, 26-31.	8.8	32
81	The photovoltage signals of bacteriorhodopsin in Langmuir-Blodgett films with different molecular orientations. Advanced Materials for Optics and Electronics, 1993, 2, 115-122.	0.6	31
82	Subpicosecond to Second Time-Scale Charge Carrier Kinetics in Hematite–Titania Nanocomposite Photoanodes. Journal of Physical Chemistry Letters, 2015, 6, 2859-2864.	2.1	31
83	Light-Induced Electron Transfer in Pyropheophytinâ^'Anthraquinone Dyads:Â Vectorial Charge Transfer in Langmuirâ^'Blodgett Films. Journal of Physical Chemistry A, 1999, 103, 3657-3665.	1.1	30
84	Redox processes in photochemistry of Pt(iv) hexahaloid complexes. RSC Advances, 2012, 2, 5768.	1.7	30
85	Large Stokes Shift Fluorescent Dyes Based on a Highly Substituted Terephthalic Acid Core. Organic Letters, 2012, 14, 1374-1377.	2.4	30
86	Controlled Orientations of Neighboring Tetracene Units by Mixed Self-Assembled Monolayers on Gold Nanoclusters for High-Yield and Long-Lived Triplet Excited States through Singlet Fission. Journal of the American Chemical Society, 2019, 141, 14720-14727.	6.6	30
87	Endothermic and Exothermic Energy Transfer Made Equally Efficient for Triplet–Triplet Annihilation Upconversion. Journal of Physical Chemistry Letters, 2020, 11, 318-324.	2.1	30
88	Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements. PLoS ONE, 2015, 10, e0134436.	1.1	30
89	Photodynamics of Charge Separation and Recombination in Solid Alternating Films of Phthalocyanine or Phthalocyanineâ^'Fullerene Dyad and Perylene Dicarboximide. Journal of Physical Chemistry C, 2009, 113, 1984-1992.	1.5	29
90	Porphyrin adsorbed on the (101̄0) surface of the wurtzite structure of ZnO – conformation induced effects on the electron transfer characteristics. Physical Chemistry Chemical Physics, 2013, 15, 17408.	1.3	29

#	Article	IF	CITATIONS
91	Effects of fullerene encapsulation on structure and photophysical properties of porphyrin-linked single-walled carbon nanotubes. Chemical Communications, 2011, 47, 11781.	2.2	28
92	Syntheses and Excitation Transfer Studies of Near-Orthogonal Free-Base Porphyrin–Ruthenium Phthalocyanine Dyads and Pentad. Inorganic Chemistry, 2012, 51, 3656-3665.	1.9	28
93	Charge transfer dynamics in CsPbBr3 perovskite quantum dots–anthraquinone/fullerene (C60) hybrids. Nanoscale, 2019, 11, 862-869.	2.8	28
94	Synthesis and time-resolved fluorescence study of porphyrin-functionalized gold nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 212, 129-134.	2.0	27
95	Refractive index change dominates the transient absorption response of metal halide perovskite thin films in the near infrared. Physical Chemistry Chemical Physics, 2019, 21, 14663-14670.	1.3	27
96	Exclusive occurrence of photoinduced energy transfer and switching of its direction by rectangular Ĩ€-extension of nanographenes. Chemical Science, 2019, 10, 6642-6650.	3.7	27
97	Effect on Charge Transfer and Charge Recombination by Insertion of a Naphthaleneâ€Based Bridge in Molecular Dyads Based on Borondipyrromethene (Bodipy). ChemPhysChem, 2012, 13, 3672-3681.	1.0	26
98	Probing the excited state dynamics of a new family of Cu(i)-complexes with an enhanced light absorption capacity: excitation-wavelength dependent population of states through branching. Physical Chemistry Chemical Physics, 2013, 15, 13128.	1.3	26
99	Photoinduced interlayer electron transfer in alternating porphyrin–fullerene dyad and regioregular poly(3-hexylthiophene) Langmuir–Blodgett films. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 178, 185-191.	2.0	25
100	Photoinduced Energy and Charge Transfer in Layered Porphyrin-Gold Nanoparticle Thin Films. Journal of Physical Chemistry C, 2008, 112, 10316-10322.	1.5	25
101	Quantitative Analysis of Intramolecular Exciplex and Electron Transfer in a Double-Linked Zinc Porphyrin–Fullerene Dyad. Journal of Physical Chemistry A, 2012, 116, 9653-9661.	1.1	25
102	Dynamics of time-resolved photoluminescence in GaInNAs and GaNAsSb solar cells. Nanoscale Research Letters, 2014, 9, 80.	3.1	25
103	Charge carrier dynamics in tantalum oxide overlayered and tantalum doped hematite photoanodes. Journal of Materials Chemistry A, 2019, 7, 3206-3215.	5.2	25
104	A Pentaceneâ€based Nanotube Displaying Enriched Electrochemical and Photochemical Activities. Angewandte Chemie, 2019, 131, 1127-1131.	1.6	25
105	Tunable Ti ³⁺ -Mediated Charge Carrier Dynamics of Atomic Layer Deposition-Grown Amorphous TiO ₂ . Journal of Physical Chemistry C, 2022, 126, 4542-4554.	1.5	25
106	Light-Induced Electron Transfer in Pyropheophytinâ^'Anthraquinone and Phytochlorinâ^'Anthraquinone Dyads:Â Influence of Conformational Exchange. Journal of Physical Chemistry A, 1999, 103, 3646-3656.	1.1	24
107	Femtosecond to nanosecond spectroscopy of transition metal-doped TiO2 particles. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 175, 8-14.	2.0	24
108	Exciplexâ^'Exciplex Energy Transfer and Annihilation in Solid Films of Porphyrinâ^'Fullerene Dyads. Journal of the American Chemical Society, 2006, 128, 16036-16037.	6.6	24

#	Article	IF	CITATIONS
109	Temperature Independent Ultrafast Photoinduced Charge Transfer in Donorâ^'Acceptor Pairs Forming Exciplexes. Journal of Physical Chemistry C, 2009, 113, 11475-11483.	1.5	24
110	Energy and Electron Transfer in Multilayer Films Containing Porphyrinâ^'Fullerene Dyad. Journal of Physical Chemistry C, 2009, 113, 3819-3825.	1.5	24
111	Effect of Mutual Position of Electron Donor and Acceptor on Photoinduced Electron Transfer in Supramolecular Chlorophyll–Fullerene Dyads. Journal of Physical Chemistry A, 2014, 118, 1420-1429.	1.1	24
112	Ï€â€Expanded α,βâ€Unsaturated Ketones: Synthesis, Optical Properties, and Twoâ€Photonâ€Induced Polymerization. ChemPhysChem, 2015, 16, 682-690.	1.0	24
113	Photoinduced Electron Transfer and Photocurrent in Multicomponent Organic Molecular Films Containing Oriented Porphyrin-Fullerene Dyad. Journal of Physical Chemistry C, 2008, 112, 10256-10265.	1.5	23
114	Tuning the Förster overlap integral: energy transfer over 20 Ångstroms from a pyrene-based donor to borondipyrromethene (Bodipy). Physical Chemistry Chemical Physics, 2013, 15, 9854.	1.3	23
115	Homoleptic Bis(aryl)acenaphthenequinonediimine-CuIComplexes - Synthesis and Characterization of a Family of Compounds with Improved Light-Gathering Characteristics. European Journal of Inorganic Chemistry, 2013, 2013, 2418-2431.	1.0	23
116	A Pentaceneâ€based Nanotube Displaying Enriched Electrochemical and Photochemical Activities. Angewandte Chemie - International Edition, 2019, 58, 1115-1119.	7.2	23
117	The effect of calcination on photocatalytic activity of TiO2 particles: femtosecond study. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 395-401.	2.0	22
118	Distributed decay kinetics of charge separated state in solid film. Chemical Physics Letters, 2007, 437, 238-242.	1.2	22
119	Exciplex Formation and Excited State Deactivation of Difluoroborondipyrromethene (Bodipy) Dyads. ChemPhysChem, 2010, 11, 1685-1692.	1.0	21
120	Exploring Förster electronic energy transfer in a decoupled anthracenyl-based borondipyrromethene (bodipy) dyad. Physical Chemistry Chemical Physics, 2012, 14, 4447.	1.3	21
121	Azafullerene C ₅₉ N–Phthalocyanine Dyad: Synthesis, Characterisation and Photoinduced Electron Transfer. ChemPhysChem, 2012, 13, 1246-1254.	1.0	21
122	Synergetic Role of Conformational Flexibility and Electronic Coupling for Quantitative Intramolecular Singlet Fission. Journal of Physical Chemistry C, 2021, 125, 18287-18296.	1.5	21
123	Structure and Photoelectrochemical Properties of Phthalocyanine and Perylene Diimide Composite Clusters Deposited Electrophoretically on Nanostructured SnO2 Electrodes. Langmuir, 2006, 22, Printai 550 Ocesses in photophysics and photochemistry of <mml:math <="" altimg="si5.gif" display="inline" td=""><td>1.6</td><td>20</td></mml:math>	1.6	20
124	overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.2	20
125	xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" Effects of Electrode Strektureron Photoelectrochemical Properties of ZnO Electrodes Modified with Porphyrinâ^Fullerene Composite Layers with an Intervening Fullerene Monolayer. Journal of Physical Chemistry C, 2009, 113, 10819-10828.	1.5	20
126	Controllable Electronic Structures and Photoinduced Processes of Bayâ€Linked Perylenediimide Dimers and a Ferroceneâ€Linked Triad. Chemistry - A European Journal, 2016, 22, 9631-9641.	1.7	20

#	Article	IF	CITATIONS
127	Optimization of Photogenerated Charge Carrier Lifetimes in ALD Grown TiO2 for Photonic Applications. Nanomaterials, 2020, 10, 1567.	1.9	20
128	Photoinduced charge transfer through films containing poly(hexylthiophene), phthalocyanine, and porphyrin–fullerene layers. Thin Solid Films, 2009, 517, 2988-2993.	0.8	19
129	Effect of gold nanoparticles on intramolecular exciplex emission in organized porphyrin–fullerene dyad films. Chemical Physics Letters, 2009, 471, 269-275.	1.2	19
130	Photophysical Study of a Self-Assembled Donor–Acceptor Two-Layer Film on TiO ₂ . Langmuir, 2015, 31, 944-952.	1.6	19
131	Supramolecular Singlet Fission of Pentacene Dimers within Polyaromatic Capsules. Journal of the American Chemical Society, 2021, 143, 9361-9367.	6.6	19
132	PHOTOPHYSICAL PROPERTIES OF CHLOROPHYLL <i>a</i> LANGMUIRâ€BLODGETT MULTILAYER FILMS. Photochemistry and Photobiology, 1993, 58, 284-289.	1.3	18
133	Electronically Coupled Uranium and Iron Oxide Heterojunctions as Efficient Water Oxidation Catalysts. Advanced Functional Materials, 2019, 29, 1905005.	7.8	18
134	Modification of Surface States of Hematite-Based Photoanodes by Submonolayer of TiO ₂ for Enhanced Solar Water Splitting. Journal of Physical Chemistry C, 2020, 124, 13094-13101.	1.5	18
135	The kinetics of charges in dry bacteriorhodopsin Langmuir-Blodgett films—an analysis and comparison of electrical and optical signals. Advanced Materials for Optics and Electronics, 1993, 2, 211-220.	0.6	17
136	Kinetics of Photoinduced Electron Transfer in Polythiopheneâ^'Porphyrinâ^'Fullerene Molecular Films. Journal of Physical Chemistry B, 2006, 110, 19515-19520.	1.2	17
137	Excitation energy transfer in the LHC-II trimer: from carotenoids to chlorophylls in space and time. Photosynthesis Research, 2011, 107, 195-207.	1.6	17
138	Chain processes in the photochemistry of PtIV halide complexes in aqueous solutions. Russian Chemical Bulletin, 2013, 62, 1540-1548.	0.4	17
139	Slow Charge Recombination and Enhanced Photoelectrochemical Properties of Diazaporphyrin-Fullerene Linked Dyad. Journal of Physical Chemistry C, 2014, 118, 1808-1820.	1.5	17
140	Compact hematite buffer layer as a promoter of nanorod photoanode performances. Scientific Reports, 2016, 6, 35049.	1.6	17
141	Transient absorption and photovoltage study of $\widehat{a} \in \widehat{a}$ self-assembled bacteriorhodopsin/polycation multilayer films. Biosensors and Bioelectronics, 2002, 17, 509-515.	5.3	16
142	Photophysics of Fe(III)–sulfosalicylic acid complexes in aqueous solutions. Chemical Physics Letters, 2007, 445, 203-207.	1.2	16
143	Long-lived charge separated state in molecular films containing porphyrin–fullerene dyad. Chemical Physics Letters, 2008, 460, 241-244.	1.2	16
144	Off the Back or on the Side: Comparison of <i>meso</i> and 2â€Substituted Donorâ€Acceptor Difluoroborondipyrromethene (Bodipy) Dyads. European Journal of Organic Chemistry, 2010, 2010, 2867-2877.	1.2	16

#	Article	IF	CITATIONS
145	Photoconductivity of thin organic films. Applied Surface Science, 2010, 256, 3900-3905.	3.1	16
146	Independence and inverted dependence on temperature of rates of photoinduced electron transfer in double-linked phthalocyanine-fullerene dyads. Photochemical and Photobiological Sciences, 2010, 9, 949-959.	1.6	16
147	Remarkable Dependence of Exciplex Decay Rate on Through-Space Separation Distance between Porphyrin and Chemically Converted Graphene. Journal of Physical Chemistry C, 2016, 120, 28337-28344.	1.5	16
148	Hexaphyrin as a Potential Theranostic Dye for Photothermal Therapy and ¹⁹ F Magnetic Resonance Imaging. ChemBioChem, 2017, 18, 951-959.	1.3	16
149	Photoinduced Energy Transfer in ZnCdSeS Quantum Dot–Phthalocyanines Hybrids. ACS Omega, 2018, 3, 10048-10057.	1.6	16
150	Molecular Design Strategy for High-Yield and Long-Lived Individual Doubled Triplet Excitons through Intramolecular Singlet Fission. ACS Energy Letters, 2022, 7, 390-400.	8.8	16
151	Transient states in photoinduced electron transfer reactions of porphyrin- and phthalocyanine-fullerene dyads. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1090-1097.	0.4	15
152	Ultrafast pump-probe spectroscopy of IrCl62â^' complex in alcohol solutions. Photochemical and Photobiological Sciences, 2011, 10, 1709-1714.	1.6	15
153	Charge separation and charge recombination photophysical studies in a series of perylene–C ₆₀ linear and cyclic dyads. Physical Chemistry Chemical Physics, 2016, 18, 3598-3605.	1.3	15
154	Efficient photon upconversion at remarkably low annihilator concentrations in a liquid polymer matrix: when less is more. Chemical Communications, 2018, 54, 14029-14032.	2.2	15
155	Comparison of electron injection and recombination on TiO ₂ nanoparticles and ZnO nanorods photosensitized by phthalocyanine. Royal Society Open Science, 2018, 5, 180323.	1.1	15
156	Effect of Anion Ligation on Electron Transfer of Double-Linked Zinc Porphyrinâ^'Fullerene Dyad. Journal of Physical Chemistry A, 2011, 115, 3263-3271.	1.1	14
157	Fluorescent protein-based FRET sensor for intracellular monitoring of redox status in bacteria at single cell level. Analytical and Bioanalytical Chemistry, 2014, 406, 7195-7204.	1.9	14
158	Ultrafast photophysical processes for Fe(<scp>iii</scp>)-carboxylates. Dalton Transactions, 2014, 43, 17590-17595.	1.6	14
159	Photoinduced hole transfer in QD–phthalocyanine hybrids. Physical Chemistry Chemical Physics, 2016, 18, 27414-27421.	1.3	14
160	High‥ield Excited Triplet States in Pentacene Selfâ€Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission. Angewandte Chemie, 2016, 128, 5316-5320.	1.6	14
161	Critical Sensitizer Quality Attributes for Efficient Triplet–Triplet Annihilation Upconversion with Low Power Density Thresholds. Journal of Physical Chemistry C, 2019, 123, 22865-22872.	1.5	14
162	Multiphoton Excitation of CsPbBr ₃ Perovskite Quantum Dots (PQDs): How Many Electrons Can One PQD Donate to Multiple Molecular Acceptors?. Journal of Physical Chemistry Letters, 2019, 10, 2775-2781.	2.1	14

#	Article	IF	CITATIONS
163	Monitoring Charge Carrier Diffusion across a Perovskite Film with Transient Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 445-450.	2.1	14
164	Photostable orange-red fluorescent unsymmetrical diketopyrrolopyrrole–BF ₂ hybrids. Journal of Materials Chemistry C, 2020, 8, 7708-7717.	2.7	14
165	Covalent phthalocyanine-fullerene dyads: synthesis, electron transfer in solutions and molecular films. Journal of Porphyrins and Phthalocyanines, 2011, 15, 780-790.	0.4	13
166	Synthesis and Photophysical Properties of Two Diazaporphyrin–Porphyrin Hetero Dimers in Polar and Nonpolar Solutions. Journal of Physical Chemistry B, 2015, 119, 7328-7337.	1.2	13
167	High‥ield Generation of Triplet Excited States by an Efficient Sequential Photoinduced Process from Energy Transfer to Singlet Fission in Pentaceneâ€Modified CdSe/ZnS Quantum Dots. Chemistry - A European Journal, 2018, 24, 17062-17071.	1.7	13
168	Enthalpy–Entropy Compensation Effect for Triplet Pair Dissociation of Intramolecular Singlet Fission in Phenylene Spacer-Bridged Hexacene Dimers. Journal of Physical Chemistry Letters, 2021, 12, 6457-6463.	2.1	13
169	Photoreduction of IrCl62? complex in alcohol solutions and its reaction with hydroxyalkyl radicals. International Journal of Chemical Kinetics, 1998, 30, 711-719.	1.0	12
170	Photophysics of <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>IrCl</mml:mtext></mml:mrow><m complex in aqueous solutions studied by femtosecond pump–probe spectroscopy. Chemical Physics</m </mml:msubsup></mml:mrow></mml:math>	ml:m r.œ w><	mm 1/2 mn>6
171	Letters, 2009, 477, 304-308. Bidirectional Fluorescence Resonance Energy Transfer (FRET) in Mutated and Chemically Modified Yellow Fluorescent Protein (YFP). Bioconjugate Chemistry, 2011, 22, 227-234.	1.8	12
172	Femtosecond spectroscopy of the dithiolate Cu(<scp>ii</scp>) and Ni(<scp>ii</scp>) complexes. Dalton Transactions, 2014, 43, 17766-17774.	1.6	12
173	Photo-induced electron transfer at nanostructured semiconductor–zinc porphyrin interface. Chemical Physics Letters, 2014, 592, 47-51.	1.2	12
174	TIME-RESOLVED ULTRAVIOLET ABSORPTION CHANGES IN THE PHOTOCYCLE OF BACTERIORHODOPSIN. Photochemistry and Photobiology, 1991, 54, 889-895.	1.3	11
175	Long-Lived M-State in Multilayer Films Fabricated by Alternative Deposition of a Polycation and Bacteriorhodopsin. Langmuir, 2000, 16, 5503-5505.	1.6	11
176	Vectorial photoinduced electron transfer of phytochlorin-fullerene systems in Langmuir-Blodgett films. Journal of Porphyrins and Phthalocyanines, 2003, 07, 255-263.	0.4	11
177	Cationic photopolymerization of liquid fullerene derivative under visible light. Journal of Polymer Science Part A, 2008, 46, 5194-5201.	2.5	11
178	Zn pyro-pheophorbide a—fulleronicotine dyad; supramolecular self assembled donor–acceptor system for photoinduced charge separation. Chemical Communications, 2009, , 758.	2.2	11
179	Switching Competition between Electron and Energy Transfers in Porphyrin–Fullerene Dyads. Journal of Physical Chemistry B, 2020, 124, 10899-10912.	1.2	11
180	Spectroscopy of a terthiophene–vinylbenzoate. Photochemical and Photobiological Sciences, 2003, 2, 1044-1049.	1.6	10

#	Article	IF	CITATIONS
181	Effects of heavy-ion and light-ion irradiation on the room temperature carrier dynamics of InGaAs/GaAs quantum wells. Semiconductor Science and Technology, 2006, 21, 661-664.	1.0	10
182	Photoinduced vectorial electron transfer in multilayered Langmuir-Blodgett films of porphyrin and phtalocyanine derivatives. Russian Journal of Physical Chemistry A, 2010, 84, 1230-1241.	0.1	10
183	Close Proximity Dibenzo[<i>a</i> , <i>c</i>]phenazine–Fullerene Dyad: Synthesis and Photoinduced Singlet Energy Transfer. European Journal of Organic Chemistry, 2010, 2010, 3428-3436.	1.2	10
184	Excitation transfer in metal-ligand coordinated free-base porphyrin-magnesium phthalocyanine and free-base porphyrin-magnesium naphthalocyanine dyads. Journal of Porphyrins and Phthalocyanines, 2010, 14, 948-961.	0.4	10
185	Modulation of Visible Room Temperature Phosphorescence by Weak Magnetic Fields. Journal of Physical Chemistry Letters, 2012, 3, 3115-3119.	2.1	10
186	Synthesis of Fluorescent Naphthoquinolizines via Intramolecular Houben–Hoesch Reaction. Chemistry - an Asian Journal, 2015, 10, 553-558.	1.7	10
187	Effect of Hole Transporting Material on Charge Transfer Processes in Zinc Phthalocyanine Sensitized ZnO Nanorods. Journal of Physical Chemistry C, 2016, 120, 7044-7051.	1.5	10
188	Bâ€Site Coâ€Alloying with Germanium Improves the Efficiency and Stability of Allâ€Inorganic Tinâ€Based Perovskite Nanocrystal Solar Cells. Angewandte Chemie, 2020, 132, 22301-22309.	1.6	10
189	Near-Unity Singlet Fission on a Quantum Dot Initiated by Resonant Energy Transfer. Journal of the American Chemical Society, 2021, 143, 17388-17394.	6.6	10
190	Photoinduced electron transfer in a directly linked meso-triphenylamine zinc porphyrin-quinone dyad. Journal of Porphyrins and Phthalocyanines, 2011, 15, 391-400.	0.4	9
191	A Photoconductive, Thiophene–Fullerene Double-Cable Polymer, Nanorod Device. Journal of Physical Chemistry Letters, 2012, 3, 478-481.	2.1	9
192	Effect of halide binding on intramolecular exciplex of double-linked zinc porphyrin-fullerene dyad. Chemical Physics Letters, 2012, 531, 164-168.	1.2	9
193	Bis(aryl)acenaphthenequinonediimine Substituent Effect on the Properties and Coordination Environment of Ligands and Their Bis-Chelate AglComplexes. European Journal of Inorganic Chemistry, 2013, 2013, 5196-5205.	1.0	9
194	Photoinduced Electron Injection from Zinc Phthalocyanines into Zinc Oxide Nanorods: Aggregation Effects. Journal of Physical Chemistry C, 2017, 121, 9594-9605.	1.5	9
195	Photoinduced Charge Separation in Semiconductorâ€Quantumâ€Dot/Organicâ€Molecule Hybrids. ChemPhotoChem, 2018, 2, 112-120.	1.5	9
196	Strategies towards advanced ion track-based biosensors. Radiation Effects and Defects in Solids, 2009, 164, 431-437.	0.4	8
197	Donor–Acceptor Alternating Copolymer Based on Thermally Converted Isothianaphthene Dimer and Thiazolothiazole Subunits. Journal of Physical Chemistry C, 2012, 116, 17414-17423.	1.5	8
198	Photochemical properties and sensor applications of modified yellow fluorescent protein (YFP) covalently attached to the surfaces of etched optical fibers (EOFs). Analytical and Bioanalytical Chemistry, 2012, 402, 1149-1158.	1.9	8

#	Article	IF	CITATIONS
199	Determination of preferential molecular orientation in porphyrin-fullerene dyad ZnDHD6ee monolayers by the X-ray standing-wave method and X-ray reflectometry. Crystallography Reports, 2013, 58, 934-938.	0.1	8
200	Charge-Transfer Dynamics in Poly(3-hexylthiophene):Perylenediimide-C ₆₀ Blend Films Studied by Ultrafast Transient Absorption. Journal of Physical Chemistry C, 2014, 118, 10625-10630.	1.5	8
201	Synthesis, Structural and Photophysical Properties of Pentacene Alkanethiolate Monolayer-Protected Gold Nanoclusters and Nanorods: Supramolecular Intercalation and Photoinduced Electron Transfer with C ₆₀ . Journal of Physical Chemistry C, 2017, 121, 9043-9052.	1.5	8
202	Ultralong 20 Milliseconds Charge Separation Lifetime for Photoilluminated Oligophenylenevinylene–Azafullerene Systems. Advanced Functional Materials, 2018, 28, 1702278.	7.8	8
203	Photophysical Properties of Porphyrin Dimer–Single-Walled Carbon Nanotube Linked Systems. Journal of Physical Chemistry C, 2018, 122, 13285-13293.	1.5	8
204	Good Solvent Effects of C70Cluster Formations and Their Electron-Transporting and Photoelectrochemical Propertiesâ€. Journal of Physical Chemistry B, 2010, 114, 14287-14297.	1.2	7
205	The effect of thiophene substituents of fulleropyrrolidine acceptors on the performance of inverted organic solar cells. Synthetic Metals, 2014, 195, 193-200.	2.1	7
206	Occurrence of photoinduced charge separation by the modulation of the electronic coupling between pyrene dimers and chemically converted graphenes. Chemical Communications, 2017, 53, 1025-1028.	2.2	7
207	Design aspects of all atomic layer deposited TiO ₂ –Fe ₂ O ₃ scaffold-absorber photoanodes for water splitting. Sustainable Energy and Fuels, 2018, 2, 2124-2130.	2.5	7
208	Time-resolved refractive index change during the bacteriorhodopsin photocycle. European Biophysics Journal, 1989, 17, 131.	1.2	6
209	Interlayer energy transfer between pyrene-dodecanoic acid and NBD-dodecanoic acid in Langmuir-Blodgett films. Journal of Luminescence, 1997, 75, 245-253.	1.5	6
210	Ultrafast dynamics of Ni+-irradiated and annealed GaInAs/InP multiple quantum wells. Journal Physics D: Applied Physics, 2006, 39, 2659-2663.	1.3	6
211	Synthesis of porphyrinoids with silane anchors and their covalent self-assembling and metallation on solid surface. Journal of Colloid and Interface Science, 2012, 369, 58-70.	5.0	6
212	Photophysical properties of Sn (IV)tetraphenylporphyrin-pyrene dyad with a β-vinyl linker. Journal of Porphyrins and Phthalocyanines, 2015, 19, 288-300.	0.4	6
213	Long-Range Observation of Exciplex Formation and Decay Mediated by One-Dimensional Bridges. Journal of Physical Chemistry C, 2017, 121, 13952-13961.	1.5	6
214	Concentration-dependent photophysical switching in mixed self-assembled monolayers of pentacene and perylenediimide on gold nanoclusters. Physical Chemistry Chemical Physics, 2018, 20, 8695-8706.	1.3	6
215	Hydrogen peroxide assisted photorelease of an anthraquinone-based ligand from [Ru(2,2′-bipyridine) ₂ (9,10-dioxo-9,10-dihydroanthracen-1-olate)]Cl in aqueous solution. Dalton Transactions, 2020, 49, 13243-13252.	1.6	6
216	The Fast Photovoltaic Response from Multilayer by Alternate Layer-by-layer Assembly of Polycation and Bacteriorhodopsin. Chemistry Letters, 2000, 29, 266-267.	0.7	5

#	Article	IF	CITATIONS
217	Monitoring ultrathin film photopolymerization of tetraâ€alkylepoxyporphyrin by UVâ€Vis spectroscopy. Journal of Polymer Science Part A, 2009, 47, 6095-6103.	2.5	5
218	Photochemical properties of porphyrin films covering curved surfaces of optical fibers. Chemical Physics Letters, 2009, 471, 290-294.	1.2	5
219	Interlayer energy transfer between perylene diimide and phthalocyanine monolayers. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 211, 26-31.	2.0	5
220	Photoinduced charge shift and charge recombination through an alkynyl spacer for an expanded acridinium-based dyad. Physical Chemistry Chemical Physics, 2012, 14, 3194.	1.3	5
221	Study of structural order in porphyrin-fullerene dyad ZnDHD6ee monolayers by electron diffraction and atomic force microscopy. Crystallography Reports, 2013, 58, 927-933.	0.1	5
222	Effect of anion coordination on electron transfer in double-linked zinc phthalocyanine–fullerene dyad. Chemical Physics Letters, 2013, 572, 96-100.	1.2	5
223	Chlorophyll tailored 20-trifluoroacetamide and its azacrown derivative as pH sensitive colorimetric sensor probe with response to AcOâ'', Fâ'' and CNâ'' ions. RSC Advances, 2013, 3, 11485.	1.7	5
224	Formation and stability of porphyrin and phthalocyanine self-assembled monolayers on ZnO surfaces. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1264-1271.	0.4	5
225	Effect of Co-Adsorbate and Hole Transporting Layer on the Photoinduced Charge Separation at the TiO ₂ –Phthalocyanine Interface. ACS Omega, 2018, 3, 4947-4958.	1.6	5
226	Ultrafast Photochemistry of the [Cr(NCS)6]3– Complex in Dimethyl Sulfoxide and Dimethylformamide upon Excitation into Ligand-Field Electronic State. Journal of Physical Chemistry B, 2020, 124, 3724-3733.	1.2	5
227	Comparison of the heat-treatment effect on carrier dynamics in TiO ₂ thin films deposited by different methods. Physical Chemistry Chemical Physics, 2021, 23, 17672-17682.	1.3	5
228	Singlet Exciton Fission and Associated Enthalpy Changes with a Covalently Linked Bichromophore Comprising TIPS-Pentacenes Held in an Open Conformation. Journal of Physical Chemistry A, 2021, 125, 1184-1197.	1.1	5
229	Mono-, bis- and tetrahydroxy phthalocyanines as building blocks for monomolecular layer assemblies. Journal of Porphyrins and Phthalocyanines, 2010, 14, 397-411.	0.4	4
230	Photocurrent generation in fullerene–phthalocyanine composite by in situ cationic polymerization. Solar Energy Materials and Solar Cells, 2011, 95, 909-916.	3.0	4
231	Dynamics of Photoinduced Charge Transfer of Fullerene Based Donor–Acceptor Systems: From Solution to Organized Molecular Films. World Scientific Series on Carbon Nanoscience, 2011, , 405-440.	0.1	4
232	Photophysics of bis(ethylxanthato)nickel(II) [Ni(EtOCS2)2] complex studied by femtosecond pump-probe spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 251, 57-62.	2.0	4
233	ROFRET: A Molecularâ€6cale Fluorescent Probe Displaying Viscosityâ€Enhanced Intramolecular Förster Energy Transfer. ChemPhysChem, 2014, 15, 3089-3096.	1.0	4
234	Organic–Inorganic Azafullereneâ€Gold C ₅₉ Nâ€Au Nanohybrid: Synthesis, Characterization, and Properties. Chemistry - A European Journal, 2014, 20, 14729-14735.	1.7	4

#	Article	IF	CITATIONS
235	Effects of orientation at the phthalocyanine–CdSe interface on the electron transfer characteristics. Physical Chemistry Chemical Physics, 2017, 19, 10511-10517.	1.3	4
236	Tailored Fabrication of Transferable and Hollow Weblike Titanium Dioxide Structures. ChemPhysChem, 2017, 18, 64-71.	1.0	4
237	Ni+-irradiated InGaAs/GaAs quantum wells: picosecond carrier dynamics. New Journal of Physics, 2005, 7, 131-131.	1.2	3
238	Photochemistry of the IrCl6 2â^' complex in aqueous solutions in the presence of the bromide anions. Russian Chemical Bulletin, 2008, 57, 2487-2494.	0.4	3
239	Interlayer photoinduced electron transfer in Langmuir-Blodgett films based on porphyrin and phthalocyanine derivatives. Bulletin of the Lebedev Physics Institute, 2008, 35, 118-121.	0.1	3
240	Charge transfer properties of a donor–acceptor dyad based on an expanded acridinium cation. RSC Advances, 2013, 3, 4995.	1.7	3
241	Charge Shift/Recombination and Triplet Formation in a Molecular Dyad based on a Borondipyrromethene (Bodipy) and an Expanded Acridinium Cation. ChemPhotoChem, 2018, 2, 277-282.	1.5	3
242	Photochemistry of dithiophosphinate Ni(S2P(i-Bu)2)2 complex in CCl4. Transient species and TD-DFT calculations. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 381, 111857.	2.0	3
243	Enhanced electronic communication through a conjugated bridge in a porphyrin–fullerene donor–acceptor couple. Journal of Materials Chemistry C, 2021, 9, 10889-10898.	2.7	3
244	Voltage-induced fluorescence lifetime imaging of a BODIPY derivative in giant unilamellar vesicles as potential neuron membrane mimics. Chemical Communications, 2021, 57, 12631-12634.	2.2	3
245	Excitation energy relaxation in chlorophyll a Langmuir-Blodgett multilayer films. , 1993, , .		2
246	Kinetics of photo-active bacteriorhodopsin analog 3,4-didehydroretinal. Journal of Photochemistry and Photobiology B: Biology, 2001, 62, 128-132.	1.7	2
247	Subthreshold carrier losses from GaInP quantum wells measured by time resolved photoluminescence. Journal of Applied Physics, 2002, 92, 173-179.	1.1	2
248	Structure of porphyrin-fullerene dyad monolayer on the water surface and solid substrate. Crystallography Reports, 2011, 56, 157-163.	0.1	2
249	Complexation Enhanced Excitedâ€State Deactivation by Lithium Ion Coordination to a Borondipyrromethene (Bodipy) Donor–Bridge–Acceptor Dyad. European Journal of Organic Chemistry, 2013, 2013, 6859-6869.	1.2	2
250	Porphyrin-Based Donor–Acceptor Dyads — Engineering the Linker and Tuning the Photoinduced Electron Transfer. , 2016, , 121-171.		2
251	Near-infrared light control of membrane potential by an electron donor–acceptor linked molecule. Chemical Communications, 2020, 56, 12562-12565.	2.2	2
252	Fast non-ambipolar diffusion of charge carriers and the impact of traps and hot carriers on it in CsMAFA perovskite and GaAs. Materials Advances, 2021, 2, 6613-6619.	2.6	2

#	Article	IF	CITATIONS
253	Ultrathinâ€Walled 3D Inorganic Nanostructured Networks Templated from Crossâ€Linked Cellulose Nanocrystal Aerogels. Advanced Materials Interfaces, 2021, 8, 2001181.	1.9	2
254	Room-Temperature Pentacene Fluids: Oligoethylene Glycol Substituent-Controlled Morphologies and Singlet Fission. Journal of Physical Chemistry B, 2020, 124, 11910-11918.	1.2	2
255	Time-resolved transient absorption and photoresponse studies of oriented bacteriorhodopsin in Langmuir-Blodgett films. , 1993, , .		1
256	pH dependence of the protein orientation in self-assembled bacteriorhodopsin/polycation multilayer films. International Journal of Photoenergy, 2000, 2, 41-45.	1.4	1
257	Time-Resolved Fluorometry: Typical Methods, Challenges, Applications and Standards. Springer Series on Fluorescence, 2008, , 195-214.	0.8	1
258	Selfâ€assembled monolayers (SAMs) of porphyrin deposited inside photonic crystal fibre (PCF). Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1858-1861.	0.8	1
259	Subcellular localization of bacteriophage PRD1 proteins in Escherichia coli. Virus Research, 2014, 179, 44-52.	1.1	1
260	Autocatalytic photodegradation of [Ru(ii)(2,2′-bipyridine)2DAD]+ (DADH =) Tj ETQq0 0 0 rgBT /Overlock 10 T Transactions, 2021, 50, 7640-7646.	f 50 467 T 1.6	d (1,2-dihydr 1
261	Investigations of Photoinduced Electron Transfer in Pyropheophytin-Anthraquinone Model Systems. , 1995, , 815-818.		1
262	Ultrafast Singlet Fission and Efficient Carrier Transport in a Lamellar Assembly of Bis[(trialkoxyphenyl)ethynyl]pentacene. Journal of Physical Chemistry C, 0, , .	1.5	1
263	Self-assembled monolayers of photo- electroactive organic molecules: Photoinduced electron transfer as sensing mechanism. , 2008, , .		0
264	Ultrafast excitation transfer and charge stabilization in a newly assembled photosynthetic antenna-reaction center mimic composed of boron dipyrrin, zinc porphyrin and fullerene. Faraday Discussions, 2011, , .	1.6	0
265	(Invited) The Effects of Polarity and Ligands on Electron Transfer in Porphyrin-Fullerene Dyad: A Quantitative Study. ECS Meeting Abstracts, 2013, , .	0.0	0
266	(Invited) Self-Assembled Monolayers of Porphyrin Derivatives on Semiconductor Surfaces: Photoindued Reactions at the Interface. ECS Meeting Abstracts, 2013, , .	0.0	0
267	Vectorial Photoinduced Charge Transfer in Langmuir-Blodgett Films of Porphyrin-Based Donor-Acceptor Systems. , 2012, , 537-586.		0
268	Photoiduced Electron Transfer Across Phthalocyanine Layers on ZnO Semiconductor. ECS Meeting Abstracts, 2017, , .	0.0	0
269	Photoreactions of Macrocyclic Dyes on (1010) Wurtzite Surface – Interplay Between Conformation and Electronic Effects. Ukrainian Journal of Physics, 2019, 64, 63.	0.1	0