Molly Baringer

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/6464815/publications.pdf
Version: 2024-02-01

Remote Impact of the Equatorial Pacific on Florida Current Transport. Geophysical Research Letters,
2022,49 .

Transport Structure of the South Atlantic Ocean Derived From a High-Resolution Numerical Model and Observations. Frontiers in Marine Science, 2022, 9, .

Synergy of In Situ and Satellite Ocean Observations in Determining Meridional Heat Transport in the Atlantic Ocean. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC017073.

Circulation-driven variability of Atlantic anthropogenic carbon transports and uptake. Nature
Geoscience, 2021, 14, 571-577.

Global Oceans. Bulletin of the American Meteorological Society, 2021, 102, S143-S198.
$3.3 \quad 11$

Interannual Variability of the South Atlantic Ocean Heat Content in a Highâ€Resolution Versus a
Lowâ€Resolution General Circulation Model. Geophysical Research Letters, 2020, 47, e2020GL089908.
4.0

Argo Data 1999â€"2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations
7 From a Clobal Array of Profiling Floats. Frontiers in Marine Science, 2020, 7, .
2.5

117

8 What Caused the Largeâ€ 5 cale Heat Deficit in the Subtropical South Atlantic Ocean During 2009â€"2012?.
8 Geophysical Research Letters, 2020, 47, e2020GL088206.

9 OSSE Assessment of Underwater Clider Arrays to Improve Ocean Model Initialization for Tropical
$9 \quad$ Cyclone Prediction. Journal of Atmospheric and Oceanic Technology, 2020, 37, 467-487.

10 Inferring Florida Current Volume Transport From Satellite Altimetry. Journal of Geophysical
Research: Oceans, 2020, 125, e2020JC016763.

11 Global Oceans. Bulletin of the American Meteorological Society, 2020, 101, S129-S184.
3.3

12

12 Pending recovery in the strength of the meridional overturning circulation at $26 \hat{A}^{\circ} \hat{a} € \%$. N . Ocean Science,
2020, 16, 863-874.
3.4

65

The Complementary Value of XBT and Argo Observations to Monitor Ocean Boundary Currents and
13 Meridional Heat and Volume Transports: A Case Study in the Atlantic Ocean. Journal of Atmospheric and Oceanic Technology, 2020, 37, 2267-2282.

14 On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array. Frontiers in Marine Science, 2019, 6, .
2.5

235

More Than 50 Years of Successful Continuous Temperature Section Measurements by the Clobal
15 Expendable Bathythermograph Network, Its Integrability, Societal Benefits, and Future. Frontiers in Marine Science, 2019, 6, .

Global Perspectives on Observing Ocean Boundary Current Systems. Frontiers in Marine Science, 2019, 6, .

The upper, deep, abyssal and overturning circulation in the Atlantic Ocean at $30 \hat{A}^{\circ} \mathrm{S}$ in 2003 and 2011.
Progress in Oceanography, 2019, 176, 102136.
3.2

21
19
20
21

> Clobal Meridional Overturning Circulation Inferred From a Dataâ€Constrained Ocean \& Seaâ€tce
> Model. Geophysical Research Letters, 2019, 46, 1521-1530.
$4.0 \quad 19$

22 Teleconnection between the Atlantic Meridional Overturning Circulation and Sea Level in the
3.2

Mediterranean Sea. Journal of Climate, 2019, 32, 935-955.

The North Atlantic Ocean Is in a State of Reduced Overturning. Geophysical Research Letters, 2018, 45,
1527-1533.
4.0

What Caused the Accelerated Sea Level Changes Along the U.S. East Coast During 2010â€"2015?.
Geophysical Research Letters, 2018, 45, 13,367.
4.0

65

25 State of the Climate in 2017. Bulletin of the American Meteorological Society, 2018, 99, Si-S310.
3.3

Contrasting patterns of phytoplankton pigments and chemotaxonomic groups along $30 \hat{A}^{\circ} \mathrm{S}$ in the
27 subtropical South Atlantic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 120,
1.4

27
112-121.

An estimate of diapycnal nutrient fluxes to the euphotic zone in the Florida Straits. Scientific Reports,
2017, 7, 16098.
3.3

9

29	Compensation between meridional flow components of the Atlantic MOC at $26 \hat{A}^{0} \hat{a} \notin-N$. Ocean Scier 12, 481-493.	3.4	38
30	State of the Climate in 2015. Bulletin of the American Meteorological Society, 2016, 97, Si-S275.	3.3	142
31	Remote sources for yearâ€toâ€year changes in the seasonality of the <scp>F</scp> lorida <scp>C</scp>urrent transport. Journal of Geophysical Research: Oceans, 2016, 121, 7547-7559.	2.6	25

32 An assessment of the Brazil Current baroclinic structure and variability near $22 \hat{A}^{\circ} \mathrm{S}$ in Distinct Ocean Forecasting and Analysis Systems. Ocean Dynamics, 2016, 66, 893-916.
2.2

19
33 Dissipation processes in the Tongue of the Ocean. Journal of Geophysical Research: Oceans, 2016, 121,
3159-3170.
2.6

2

34 Fifteen years of ocean observations with the global Argo array. Nature Climate Change, 2016, 6, 145-153.
18.8

380

Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP
Global Repeat Hydrography. Annual Review of Marine Science, 2016, 8, 185-215.
11.6

183

The impact of historical biases on the XBTâ€derived meridional overturning circulation estimates at
$34 \hat{A}^{\circ} \mathrm{S}$. Geophysical Research Letters, $2015,42,1848-1855$.

Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geoscience, 2015, 8, 445-449.

Ocean acidification along the Gulf Coast and East Coast of the USA. Continental Shelf Research, 2015, 98, 54-71.

Measuring the Atlantic Meridional Overturning Circulation at $26 \hat{A}^{\circ} \mathrm{N}$. Progress in Oceanography, 2015, 130, 91-111.

Measuring the Atlantic Meridional Overturning Circulation. Marine Technology Society Journal, 2015, 49, 167-177.

Observed decline of the Atlantic meridional overturning circulation 2004â€"2012. Ocean Science, 2014, 10, 29-38.

Basinâ€Wide Oceanographic Array Bridges the South Atlantic. Eos, 2014, 95, 53-54.

0.1

36
43 Basinâ€Wide Oceanographic Array Bridges the South Atlantic. Eos, 2014, 95, 53-54.4.028Seasonal variations in the South Atlantic Meridional Overturning Circulation from observations andnumerical models. Geophysical Research Letters, 2014, 41, 4611-4618.

A review of global ocean temperature observations: Implications for ocean heat content estimates
and climate change. Reviews of Geophysics, 2013, 51, 450-483.

Temporal variability of the meridional overturning circulation at $34.5 \hat{A}^{\circ} \mathrm{S}$: Results from two pilot
boundary arrays in the South Atlantic. Journal of Geophysical Research: Oceans, 2013, 118, 6461-6478.

Variability of the Deep Western Boundary Current at $26.5 \hat{A}^{\circ} \mathrm{N}$ during $2004 \mathrm{â} €^{\text {" }} 2009$. Deep-Sea Research Part
II: Topical Studies in Oceanography, 2013, 85, 154-168.

South Atlantic meridional fluxes. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 71,
21-32.

49 Ocean Heat Transport. International Geophysics, 2013, , 759-785.
0.6

13

50 State of the Climate in 2012. Bulletin of the American Meteorological Society, 2013, 94, S1-S258.
3.3

129

Past, Present, and Future Changes in the Atlantic Meridional Overturning Circulation. Bulletin of the
American Meteorological Society, 2012, 93, 1663-1676.
3.3

153

Observed interannual variability of the Atlantic meridional overturning circulation at $26.5 \hat{A}^{\circ} \mathrm{N}$.
Geophysical Research Letters, 2012, 39,.
4.0

Geophysical Research Letters, 2011, 38, n/a-n/a.

55	Importance of the assimilation of Argo float measurements on the Meridional Overturning Circulation in the South Atlantic. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	16
56	Continuous, Array-Based Estimates of Atlantic Ocean Heat Transport at $26.5 \hat{A}^{\circ} \mathrm{N}$. Journal of Climate, 2011, 24, 2429-2449.	3.2	352
57	The Role of Interocean Exchanges on Decadal Variations of the Meridional Heat Transport in the South Atlantic. Journal of Physical Oceanography, 2011, 41, 1498-1511.	1.7	38
58	Monitoring the Atlantic meridional overturning circulation. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 1744-1753.	1.4	135
59	Historical variability in Atlantic meridional baroclinic transport at $26.5 \hat{A}^{\circ} \mathrm{N}$ from boundary dynamic height observations. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 1754-1767.	1.4	19
60	Propagation pathways of classical Labrador Sea water from its source region to $26 \hat{A}^{\circ} \mathrm{N}$. Journal of Geophysical Research, 2011, 116, .	3.3	54
61	State of the Climate in 2010. Bulletin of the American Meteorological Society, 2011, 92, S1-S236.	3.3	135
62	Florida Current transport variability: An analysis of annual and longer-period signals. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 835-846.	1.4	156
63	Seasonal Variability of the Atlantic Meridional Overturning Circulation at $26.5 \hat{A}^{\circ} \mathrm{N}$. Journal of Climate, 2010, 23, 5678-5698.	3.2	270

64 State of the Climate in 2009. Bulletin of the American Meteorological Society, 2010, 91, s1-s222. 3.3 121
65 Observed Interannual Variability of the Florida Current: Wind Forcing and the North Atlantic Oscillation. Journal of Physical Oceanography, 2009, 39, 721-736.
1.4

An assessment of the seasonal mixed layer salinity budget in the Southern Ocean. Journal of

73 Meridional heat transport determined with expendable bathythermographsâ $€$ "Part I: Error estimates
73 from model and hydrographic data. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 1390-1401.

Meridional heat transport determined with expandable bathythermographsâ€"Part II: South Atlantic transport. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 1402-1420.

Temporal Variability of the Atlantic Meridional Overturning Circulation at $26.5 \hat{A}^{\circ} \mathrm{N}$. Science, 2007, 317, 935-938.

Observed Flow Compensation Associated with the MOC at $26.5 \hat{A}^{\circ} \mathrm{N}$ in the Atlantic. Science, 2007, 317, 938-941.
A continuous record of Florida Current temperature transport at $27 \hat{A}^{\circ} \mathrm{N}$. Geophysical Research Letters,
2005,32 ,

$80 \quad$| Metabolic poise in the North Atlantic Ocean diagnosed from organic matter transports. Limnology |
| :--- |
| and Oceanography, 2004, 49, 1084-1094. |

81
82

Transport variability of the Deep Western Boundary Current and the Antilles Current off Abaco
Island, Bahamas. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 1397-1415.

A 1998 â $€$ " 1992 comparison of inorganic carbon and its transport across $24.5 \hat{A}^{\circ} \mathrm{N}$ in the Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50, 3041-3064.
1.4

42
Comparison of hydrographic and altimeter based estimates of sea level height variability in the
Atlantic Ocean. Elsevier Oceanography Series, 2003, , 23-48.

Surface currents in the tropical Atlantic across high density XBT line AX08. Geophysical Research
84 Letters, 2002, 29, 71-1-71-4.
4.0
$0.1 \quad 1$

85 Sixteen years of Florida Current Transport at $27 \hat{A}^{\circ}$ N. Geophysical Research Letters, 2001, 28, 3179-3182. $4.0 \quad 218$

Transition regions and their role in the relationship between sea surface height and subsurface temperature structure in the Atlantic Ocean. Geophysical Research Letters, 2001, 28, 3943-3946.
4.0

29

87 A review of the physical oceanography of the Mediterranean outflow. Marine Geology, 1999, 155, 63-82.
2.1

157

Momentum and Energy Balance of the Mediterranean Outflow. Journal of Physical Oceanography,
1997, 27, 1678-1692.
1.7

91

Mixing and Spreading of the Mediterranean Outflow. Journal of Physical Oceanography, 1997, 27,
1654-1677.
1.7

278

Current. Geophysical Research Letters, 1997, 24, 2573-2576.

Preliminary results from WOCE hydrographic sections at $80 \hat{A}^{\circ} E$ and $32 \hat{A}^{\circ}$ S in the central Indian Ocean.

