Yang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6464731/publications.pdf

Version: 2024-02-01

394421 434195 1,098 62 19 31 citations h-index g-index papers 62 62 62 881 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Distinguishing the viability of a single yeast cell with an ultra-sensitive radio frequency sensor. Lab on A Chip, 2010, 10, 553.	6.0	94
2	Unique 3D flower-on-sheet nanostructure of NiCo LDHs: Controllable microwave-assisted synthesis and its application for advanced supercapacitors. Journal of Alloys and Compounds, 2019, 788, 1029-1036.	5 . 5	83
3	A rotary radiation structure for microwave heating uniformity improvement. Applied Thermal Engineering, 2018, 141, 648-658.	6.0	65
4	A 5.8 GHz Circularly Polarized Rectenna With Harmonic Suppression and Rectenna Array for Wireless Power Transfer. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 1276-1280.	4.0	56
5	An approach for simulating the microwave heating process with a slow- rotating sample and a fast-rotating mode stirrer. International Journal of Heat and Mass Transfer, 2019, 140, 440-452.	4.8	49
6	Microwave heating based on two rotary waveguides to improve efficiency and uniformity by gradient descent method. Applied Thermal Engineering, 2020, 178, 115594.	6.0	47
7	Model Stirrer Based on a Multi-Material Turntable for Microwave Processing Materials. Materials, 2017, 10, 95.	2.9	44
8	A Circularly Polarized Rectenna Array Based on Substrate Integrated Waveguide Structure With Harmonic Suppression. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 684-688.	4.0	30
9	Dynamic analysis of a continuous-flow microwave-assisted screw propeller system for biodiesel production. Chemical Engineering Science, 2019, 202, 146-156.	3.8	30
10	A Phase-Shifting Method for Improving the Heating Uniformity of Microwave Processing Materials. Materials, 2016, 9, 309.	2.9	29
11	A Low-Profile Lightweight Circularly Polarized Rectenna Array Based on Coplanar Waveguide. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 1659-1663.	4.0	29
12	Design and Implementation of SIW Cavity-Backed Dual-Polarization Antenna Array With Dual High-Order Modes. IEEE Transactions on Antennas and Propagation, 2019, 67, 4889-4894.	5.1	29
13	Microwave Power Absorption Mechanism of Metallic Powders. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 2107-2115.	4.6	28
14	Design of Microwave Directional Heating System Based on Phased-Array Antenna. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 4896-4904.	4.6	28
15	Multiphysics modeling of microwave heating of solid samples in rotary lifting motion in a rectangular multi-mode cavity. Innovative Food Science and Emerging Technologies, 2021, 73, 102767.	5. 6	28
16	Dynamic analysis of continuous-flow microwave reactor with a screw propeller. Applied Thermal Engineering, 2017, 123, 1456-1461.	6.0	24
17	60 GHz Substrate-Integrated-Waveguide-Fed Patch Antenna Array With Quadri-Polarization. IEEE Transactions on Antennas and Propagation, 2018, 66, 7406-7411.	5.1	23
18	Microwave Power System Based on a Combination of Two Magnetrons. IEEE Transactions on Electron Devices, 2017, 64, 4272-4278.	3.0	22

#	Article	IF	CITATIONS
19	A Ka-Band Circularly Polarized Substrate Integrated Cavity-Backed Antenna Array. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 1882-1886.	4.0	20
20	A Metallic 3-D Printed Airborne High-Power Handling Magneto-Electric Dipole Array With Cooling Channels. IEEE Transactions on Antennas and Propagation, 2019, 67, 7368-7378.	5.1	20
21	A <i>K</i> -Band 3-D Printed Focal-Shifted Two-Dimensional Beam-Scanning Lens Antenna With Nonuniform Feed. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 2721-2725.	4.0	20
22	High Isolation Substrate Integrated Waveguide Diplexer With Flexible Transmission Zeros. IEEE Microwave and Wireless Components Letters, 2020, 30, 1029-1032.	3.2	19
23	Frequency-Reconfigurable Rectenna With an Adaptive Matching Stub for Microwave Power Transmission. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 956-960.	4.0	18
24	The impact of pins on dual-port microwave heating uniformity and efficiency with dual frequency. Journal of Microwave Power and Electromagnetic Energy, 2020, 54, 83-98.	0.8	18
25	Microwave Transmitting System Based on Four-Way Master–Slave Injection-Locked Magnetrons and Horn Arrays With Suppressed Sidelobes. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 2416-2424.	4.6	16
26	A simulation method of coupled model for a microwave heating process with multiple moving elements. Chemical Engineering Science, 2021, 231, 116339.	3.8	15
27	A Tris-Dendrimer for Hosting Diverse Chemical Species. Journal of Physical Chemistry C, 2011, 115, 12789-12796.	3.1	14
28	Design and Experiment of a Reconfigurable Magnetic Resonance Coupling Wireless Power Transmission System. IEEE Microwave and Wireless Components Letters, 2020, 30, 705-708.	3.2	14
29	Accordion microwave oven for uniformity and efficiency heating. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30, e22190.	1.2	14
30	A Two-Dimensional Multibeam Lens Antenna for Hydrologic Radar Application. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 2488-2492.	4.0	12
31	Sweep Frequency Heating based on Injection Locked Magnetron. Processes, 2019, 7, 341.	2.8	12
32	High-Efficiency Continuous-Flow Microwave Heating System Based on Asymmetric Propagation Waveguide. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 1920-1931.	4.6	12
33	Uniform and highly efficient microwave heating based on dualâ€port phaseâ€differenceâ€shifting method. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31, e22784.	1.2	11
34	Novel electromagnetic-black-hole-based high-efficiency single-mode microwave liquid-phase food heating system. Innovative Food Science and Emerging Technologies, 2022, 78, 103012.	5.6	11
35	Dynamic analysis and simulation on continuous flow processing of biodiesel production in single-mode microwave cavity. International Journal of Applied Electromagnetics and Mechanics, 2016, 51, 199-213.	0.6	10
36	A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger. Materials, 2017, 10, 1160.	2.9	10

#	Article	IF	CITATIONS
37	Simulation and Analysis of Oleic Acid Pretreatment for Microwave-Assisted Biodiesel Production. Processes, 2018, 6, 142.	2.8	10
38	Space Matching for Highly Efficient Microwave Wireless Power Transmission Systems: Theory, Prototype, and Experiments. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 1985-1998.	4.6	10
39	A dynamic impedance matching algorithm of three-stub tuners based on equivalent circuit analysis. Journal of Microwave Power and Electromagnetic Energy, 2020, 54, 330-347.	0.8	9
40	Frequency qusai locking and noise reduction of the self-injection qusai locked magnetron. International Journal of Applied Electromagnetics and Mechanics, 2016, 51, 71-81.	0.6	8
41	Highly Efficient Microwave Power System of Magnetrons Utilizing Frequency-Searching Injection-Locking Technique With No Phase Shifter. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 4424-4432.	4.6	8
42	Nonreciprocal Isolating Bandpass Filter With Enhanced Isolation Using Metallized Ferrite. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 5307-5316.	4.6	8
43	Study of the Influence of Power Supply Ripple on Magnetron's Output Spectrum. IEEE Transactions on Electron Devices, 2021, 68, 4698-4704.	3.0	7
44	Measuring the microwave permittivity of single particles. , 2013, , .		6
45	Low-Cost, High-Power Jamming Transmitter Based on Magnetron. IEEE Transactions on Electron Devices, 2020, 67, 2912-2918.	3.0	5
46	Determining Electron Density of Atmospheric Microwave Air Plasma Torch by Microwave Power Measurement. IEEE Transactions on Plasma Science, 2022, 50, 1781-1789.	1.3	4
47	A General Inheritance Algorithm for Calculating of Arbitrary Moving Samples During Microwave Heating. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 1964-1974.	4.6	3
48	A Permittivity Measurement Method Based on Cavity Perturbation Technique. Applied Mechanics and Materials, 0, 590, 629-633.	0.2	2
49	Research on Dry Microwave Heating Infectious Aerosols or Droplets on Respirators. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 4246-4255.	4.6	2
50	Study of the high heating efficiency and uniformity by multi-port sweep frequency microwave irradiations. Journal of Microwave Power and Electromagnetic Energy, 2021, 55, 316-332.	0.8	2
51	Dynamic Measurement of Relative Complex Permittivity of Microwave Plasma at Atmospheric Pressure. Processes, 2021, 9, 1812.	2.8	2
52	Characteristic impedance of a novel TEM cell used for microwave chemistry experiment. Microwave and Optical Technology Letters, 2008, 50, 525-529.	1.4	1
53	Characterizing Adsorption Performance of Granular Activated Carbon with Permittivity. Materials, 2017, 10, 269.	2.9	1
54	Theoretical and experimental study on frequency pushing effect of magnetron*. Chinese Physics B, 2019, 28, 118402.	1.4	1

#	Article	IF	CITATIONS
55	A reconfigurable Bessel antenna for nearâ€field beam deflection. Microwave and Optical Technology Letters, 2020, 62, 2104-2110.	1.4	1
56	28 GHz dualâ€layer substrate integrated waveguide slot array antenna combined with quadâ€polarization. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31, e22826.	1.2	1
57	Effects of Metal Boundary Stretching and Sample Translational Motion on Microwave Heating. Processes, 2022, 10, 246.	2.8	1
58	Dualâ€linearâ€polarization substrate integrated waveguide patch antenna array. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32, .	1.2	1
59	Electromagnetic Black Hole for Efficiency Microwave Heating Based on Gradient-Index Metamaterials in Multimode Cavities. IEEE Microwave and Wireless Components Letters, 2022, 32, 1235-1238.	3.2	1
60	Effective method to design largeâ€size horn arrays with high gain and suppressed sidelobes using metaâ€screens. IET Microwaves, Antennas and Propagation, 2019, 13, 460-465.	1.4	0
61	Metallic and dielectric hybrid 3D printed Kâ€band dielectricâ€oaded antenna with reduced sidelobe. IET Microwaves, Antennas and Propagation, 2020, 14, 1969-1974.	1.4	O
62	3D Printed Millimetre-Wave and Sub-Terahertz Devices: Prospects, Challenges, and Solutions., 2022,,.		0