List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6464640/publications.pdf

Version: 2024-02-01

LINE CONDATH

#	Article	IF	CITATIONS
1	Priming for enhanced <i>ARGONAUTE2</i> activation accompanies induced resistance to cucumber mosaic virus in <i>Arabidopsis thaliana</i> . Molecular Plant Pathology, 2021, 22, 19-30.	2.0	21
2	The Induced Resistance Lexicon: Do's and Don'ts. Trends in Plant Science, 2021, 26, 685-691.	4.3	84
3	An illuminated respiratory activity monitoring system identifies priming-active compounds in plant seedlings. BMC Plant Biology, 2021, 21, 324.	1.6	4
4	Purification of MAP–kinase protein complexes and identification of candidate components by XL–TAP–MS. Plant Physiology, 2021, 187, 2381-2392.	2.3	4
5	High-throughput Screening for Defense Priming-inducing Compounds in Parsley Cell Cultures. Bio-protocol, 2021, 11, e4200.	0.2	2
6	Disclosure of salicylic acid and jasmonic acid-responsive genes provides a molecular tool for deciphering stress responses in soybean. Scientific Reports, 2021, 11, 20600.	1.6	11
7	Formaldehyde-assisted isolation of regulatory DNA elements from Arabidopsis leaves. Nature Protocols, 2020, 15, 713-733.	5.5	7
8	The Arabidopsis nonâ€host defenceâ€associated coumarin scopoletin protects soybean from Asian soybean rust. Plant Journal, 2019, 99, 397-413.	2.8	43
9	A bifunctional dermaseptin–thanatin dipeptide functionalizes the crop surface for sustainable pest management. Green Chemistry, 2019, 21, 2316-2325.	4.6	31
10	Isolation of Open Chromatin Identifies Regulators of Systemic Acquired Resistance. Plant Physiology, 2019, 181, 817-833.	2.3	28
11	Innate immune memory: An evolutionary perspective. Immunological Reviews, 2018, 283, 21-40.	2.8	165
12	Sulforaphane Modifies Histone H3, Unpacks Chromatin, and Primes Defense. Plant Physiology, 2018, 176, 2395-2405.	2.3	42
13	Parallel online determination of ethylene release rate by Shaken Parsley cell cultures using a modified RAMOS device. BMC Plant Biology, 2018, 18, 101.	1.6	14
14	Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant. Frontiers in Plant Science, 2017, 8, 1006.	1.7	45
15	Combined 15N-Labeling and TandemMOAC Quantifies Phosphorylation of MAP Kinase Substrates Downstream of MKK7 in Arabidopsis. Frontiers in Plant Science, 2017, 8, 2050.	1.7	19
16	Fighting Asian Soybean Rust. Frontiers in Plant Science, 2016, 7, 797.	1.7	67
17	Respiration activity monitoring system for any individual well of a 48-well microtiter plate. Journal of Biological Engineering, 2016, 10, 14.	2.0	38
18	<scp>ABC</scp> transporter <scp>PEN</scp> 3/ <scp>PDR</scp> 8/ <scp>ABCG</scp> 36 interacts with calmodulin that, like <scp>PEN</scp> 3, is required for Arabidopsis nonhost resistance. New Phytologist, 2016, 209, 294-306.	3.5	67

#	Article	IF	CITATIONS
19	Recognizing Plant Defense Priming. Trends in Plant Science, 2016, 21, 818-822.	4.3	549
20	Scale down of parsley cell cultures to screen putative priming compounds for agro-industry. New Biotechnology, 2016, 33, S38.	2.4	1
21	Innate immune memory in plants. Seminars in Immunology, 2016, 28, 319-327.	2.7	105
22	Substrate thiophosphorylation by Arabidopsis mitogen-activated protein kinases. BMC Plant Biology, 2016, 16, 48.	1.6	14
23	Interspecies gene transfer provides soybean resistance to a fungal pathogen. Plant Biotechnology Journal, 2016, 14, 699-708.	4.1	39
24	Oxygen transfer rate identifies priming compounds in parsley cells. BMC Plant Biology, 2015, 15, 282.	1.6	16
25	Priming for Enhanced Defense. Annual Review of Phytopathology, 2015, 53, 97-119.	3.5	733
26	Combining Metabolic 15N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome. Methods in Molecular Biology, 2015, 1306, 81-96.	0.4	9
27	Phakopsora pachyrhizi induces defense marker genes to necrotrophs in Arabidopsis thaliana. Physiological and Molecular Plant Pathology, 2014, 87, 1-8.	1.3	15
28	Report on the annual meeting of the working groups â€~Mycology' and â€~Host-Parasite-Interactions' of the German Scientific Society for Plant Protection and Plant Health r. S Journal of Plant Diseases and Protection, 2014, 121, 229-233.	1.6	0
29	Tandem Metal-Oxide Affinity Chromatography for Enhanced Depth of Phosphoproteome Analysis. Methods in Molecular Biology, 2014, 1072, 621-632.	0.4	10
30	<scp>UDP</scp> â€glucosyltransferase <scp>UGT</scp> 84A2/ <scp>BRT</scp> 1 is required for Arabidopsis nonhost resistance to the Asian soybean rust pathogen <i>Phakopsora pachyrhizi</i> . New Phytologist, 2013, 198, 536-545.	3.5	57
31	Identification of Novel in vivo MAP Kinase Substrates in Arabidopsis thaliana Through Use of Tandem Metal Oxide Affinity Chromatography. Molecular and Cellular Proteomics, 2013, 12, 369-380.	2.5	122
32	Profiling carbohydrate composition, biohydrogen capacity, and disease resistance in potato. Electronic Journal of Biotechnology, 2013, 16, .	1.2	2
33	Heat Shock Factor HsfB1 Primes Gene Transcription and Systemic Acquired Resistance in Arabidopsis Â. Plant Physiology, 2012, 159, 52-55.	2.3	53
34	Molecular aspects of defence priming. Trends in Plant Science, 2011, 16, 524-531.	4.3	677
35	Detection of Histone Modifications in Plant Leaves. Journal of Visualized Experiments, 2011, ,	0.2	22
36	Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Reports, 2011, 12, 50-55.	2.0	462

#	Article	IF	CITATIONS
37	Limitation of Nocturnal ATP Import into Chloroplasts Seems to Affect Hormonal Crosstalk, Prime Defense, and Enhance Disease Resistance in <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2010, 23, 1584-1591.	1.4	17
38	<i>Phakopsora pachyrhizi</i> , the causal agent of Asian soybean rust. Molecular Plant Pathology, 2010, 11, 169-177.	2.0	156
39	Mitogen-Activated Protein Kinases 3 and 6 Are Required for Full Priming of Stress Responses in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2009, 21, 944-953.	3.1	458
40	Chapter 9 Priming of Induced Plant Defense Responses. Advances in Botanical Research, 2009, , 361-395.	0.5	176
41	Priming: it's all the world to induced disease resistance. European Journal of Plant Pathology, 2008, 121, 233-242.	0.8	149
42	Characterization of Nonhost Resistance of <i>Arabidopsis</i> to the Asian Soybean Rust. Molecular Plant-Microbe Interactions, 2008, 21, 1421-1430.	1.4	83
43	Report on the Annual Meeting of the Working Group â€~Host-Parasite Interactions'. Journal of Plant Diseases and Protection, 2008, 115, 139-143.	1.6	0
44	Limitation of nocturnal import of ATP into Arabidopsis chloroplasts leads to photooxidative damageâ€. Plant Journal, 2007, 50, 293-304.	2.8	80
45	Priming for stress resistance: from the lab to the field. Current Opinion in Plant Biology, 2007, 10, 425-431.	3.5	354
46	Priming: it's all the world to induced disease resistance. , 2007, , 233-242.		12
47	Priming: Getting Ready for Battle. Molecular Plant-Microbe Interactions, 2006, 19, 1062-1071.	1.4	1,241
48	Exopolysaccharides ofPantoea agglomeranshave different priming and eliciting activities in suspension-cultured cells of monocots and dicots. FEBS Letters, 2006, 580, 4491-4494.	1.3	39
49	Microarray data analysis made easy. Trends in Plant Science, 2006, 11, 322-323.	4.3	7
50	Signaling in Plant Resistance Responses: Divergence and Cross-Talk of Defense Pathways. , 2006, , 166-196.		21
51	Systemic Acquired Resistance. Plant Signaling and Behavior, 2006, 1, 179-184.	1.2	226
52	Non-invasive online detection of nitric oxide from plants and some other organisms by mass spectrometry. Plant Journal, 2004, 38, 1015-1022.	2.8	81
53	Enhanced resistance to Phytophthora infestans and Alternaria solani in leaves and tubers, respectively, of potato plants with decreased activity of the plastidic ATP/ADP transporter. Planta, 2003, 217, 75-83.	1.6	34
54	Inhibition of the Plastidic ATP/ADP Transporter Protein Primes Potato Tubers for Augmented Elicitation of Defense Responses and Enhances Their Resistance against Erwinia carotovora. Plant Physiology, 2002, 129, 1607-1615.	2.3	35

#	Article	IF	CITATIONS
55	A Strobilurin Fungicide Enhances the Resistance of Tobacco against Tobacco Mosaic Virus and Pseudomonas syringae pvtabaci Â. Plant Physiology, 2002, 130, 120-127.	2.3	113
56	Benzothiadiazole-Induced Priming for Potentiated Responses to Pathogen Infection, Wounding, and Infiltration of Water into Leaves Requires the NPR1/NIM1 Gene in Arabidopsis. Plant Physiology, 2002, 128, 1046-1056.	2.3	308
5 7	Pretreatment with salicylic acid primes parsley cells for enhanced ion transport following elicitation. FEBS Letters, 2002, 520, 53-57.	1.3	24
58	Priming in plant–pathogen interactions. Trends in Plant Science, 2002, 7, 210-216.	4.3	853
59	Priming as a Mechanism in Induced Systemic Resistance of Plants. European Journal of Plant Pathology, 2001, 107, 113-119.	0.8	156
60	Extraction and Quantitative Determination of Callose from <i>Arabidopsis</i> Leaves. BioTechniques, 2000, 28, 1084-1086.	0.8	25
61	Tobacco plants perturbed in the ubiquitin-dependent protein degradation system accumulate callose, salicylic acid, and pathogenesis-related protein 1. Plant Cell Reports, 1998, 17, 876-880.	2.8	33
62	Salicylic acid has a dual role in the activation of defenceâ€related genes in parsley. Plant Journal, 1998, 14, 35-42.	2.8	171
63	A Benzothiadiazole Primes Parsley Cells for Augmented Elicitation of Defense Responses. Plant Physiology, 1998, 117, 1333-1339.	2.3	188
64	Protein dephosphorylation mediates salicylic acid-induced expression of PR-1 genes in tobacco. Plant Journal, 1997, 11, 747-757.	2.8	82
65	Two inducers of plant defense responses, 2,6-dichloroisonicotinec acid and salicylic acid, inhibit catalase activity in tobacco Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7143-7147.	3.3	284
66	Induction, modification, and transduction of the salicylic acid signal in plant defense responses Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4134-4137.	3.3	167
67	Conditioning of Parsley (Petroselinum crispum L.) Suspension Cells Increases Elicitor-Induced Incorporation of Cell Wall Phenolics. Plant Physiology, 1993, 102, 459-466.	2.3	101
68	Protein kinase inhibitor K-252a and fusicoccin induce similar initial changes in ion transport of parsley suspension cells. Physiologia Plantarum, 1992, 85, 483-488.	2.6	11
69	Dichloroisonicotinic and salicylic acid, inducers of systemic acquired resistance, enhance fungal elicitor responses in parsley cells. Plant Journal, 1992, 2, 655-660.	2.8	131
70	Protein kinase inhibitor K-252a and fusicoccin induce similar initial changes in ion transport of parsley suspension cells. Physiologia Plantarum, 1992, 85, 483-488.	2.6	0
71	The protein kinase inhibitor, K-252a, decreases elicitor-induced Ca2+uptake and K+release, and increases coumarin synthesis in parsley cells. FEBS Letters, 1991, 279, 141-144.	1.3	46
72	Chitosan-elicited synthesis of callose and of coumarin derivatives in parsley cell suspension cultures. Plant Cell Reports, 1989, 8, 152-155.	2.8	104