Donatella Armentano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6464454/publications.pdf

Version: 2024-02-01

163 papers

6,098 citations

43 h-index 67 g-index

169 all docs

169 docs citations

169 times ranked 6568 citing authors

#	Article	IF	CITATIONS
1	Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coordination Chemistry Reviews, 2022, 451, 214273.	9.5	70
2	MOFâ€Stabilized Perfluorinated Palladium Cages Catalyze the Additiveâ€Free Aerobic Oxidation of Aliphatic Alcohols to Acids. Chemistry - A European Journal, 2022, 28, .	1.7	6
3	Epoxidation vs. dehydrogenation of allylic alcohols: Heterogenization of the VO(acac)2 catalyst in a metal-organic framework. Chemical Communications, 2022, , .	2.2	2
4	Multivariate Metal–Organic Framework/Single-Walled Carbon Nanotube Buckypaper for Selective Lead Decontamination. ACS Applied Nano Materials, 2022, 5, 5223-5233.	2.4	20
5	Metalâ€Organic Frameworks as Unique Platforms to Gain Insight of Ïfâ€Hole Interactions for the Removal of Organic Dyes from Aquatic Ecosystems. Chemistry - A European Journal, 2022, , .	1.7	4
6	Click amidations, esterifications and one–pot reactions catalyzed by Cu salts and multimetal–organic frameworks (M–MOFs). Molecular Catalysis, 2022, 522, 112228.	1.0	0
7	Crystallographic Visualization of a Double Water Molecule Addition on a Pt 1 â€MOF during the Lowâ€ŧemperature Waterâ€Gas Shift Reaction. ChemCatChem, 2021, 13, 1195-1200.	1.8	7
8	Bioinspired Metalâ€Organic Frameworks in Mixed Matrix Membranes for Efficient Static/Dynamic Removal of Mercury from Water. Advanced Functional Materials, 2021, 31, 2008499.	7.8	43
9	Synthesis of a rod-based porous coordination polymer from a nucleotide as a sequential chiral inductor. Journal of Coordination Chemistry, 2021, 74, 200-215.	0.8	1
10	Reverse osmosis and nanofiltration membranes for highly efficient PFASs removal: overview, challenges and future perspectives. Dalton Transactions, 2021, 50, 5398-5410.	1.6	57
11	Soluble/MOF-Supported Palladium Single Atoms Catalyze the Ligand-, Additive-, and Solvent-Free Aerobic Oxidation of Benzyl Alcohols to Benzoic Acids. Journal of the American Chemical Society, 2021, 143, 2581-2592.	6.6	74
12	Highly Efficient Removal of Neonicotinoid Insecticides by Thioether-Based (Multivariate) Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 28424-28432.	4.0	29
13	A Nanoporous Supramolecular Metal–Organic Framework Based on a Nucleotide: Interplay of the π···π Interactions Directing Assembly and Geometric Matching of Aromatic Tails. Molecules, 2021, 26, 4594.	1.7	3
14	Photodegradation of Brilliant Green Dye by a Zinc bioMOF and Crystallographic Visualization of Resulting CO2. Molecules, 2021, 26, 4098.	1.7	5
15	Synthesis and Enhanced Capture Properties of a New BioMOF@SWCNTâ€BP: Recovery of the Endangered Rareâ€Earth Elements from Aqueous Systems. Advanced Materials Interfaces, 2021, 8, 2100730.	1.9	13
16	Synthesis and Enhanced Capture Properties of a New BioMOF@SWCNTâ€BP: Recovery of the Endangered Rareâ€Earth Elements from Aqueous Systems (Adv. Mater. Interfaces 16/2021). Advanced Materials Interfaces, 2021, 8, 2170089.	1.9	0
17	A Biocompatible Aspartic-Decorated Metal–Organic Framework with Tubular Motif Degradable under Physiological Conditions. Inorganic Chemistry, 2021, 60, 14221-14229.	1.9	3
18	Hydrolase–like catalysis and structural resolution of natural products by a metal–organic framework. Nature Communications, 2020, 11, 3080.	5.8	33

#	Article	IF	CITATIONS
19	Bio-metal-organic frameworks for molecular recognition and sorbent extractionÂof hydrophilic vitamins followed byÂtheir determination usingÂHPLC-UV. Mikrochimica Acta, 2020, 187, 201.	2.5	14
20	Singleâ€ion Magnetic Behaviour in an Iron(III) Porphyrin Complex: A Dichotomy Between High Spin and 5/2–3/2 Spin Admixture. Chemistry - A European Journal, 2020, 26, 14242-14251.	1.7	9
21	Metal–Organic Frameworks as Chemical Nanoreactors: Synthesis and Stabilization of Catalytically Active Metal Species in Confined Spaces. Accounts of Chemical Research, 2020, 53, 520-531.	7.6	81
22	Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination. Computation, 2020, 8, 28.	1.0	14
23	Glassy PEEK-WC vs. Rubbery Pebax®1657 Polymers: Effect on the Gas Transport in CuNi-MOF Based Mixed Matrix Membranes. Applied Sciences (Switzerland), 2020, 10, 1310.	1.3	12
24	Multivariate Metal–Organic Frameworks for the Simultaneous Capture of Organic and Inorganic Contaminants from Water. Journal of the American Chemical Society, 2019, 141, 13601-13609.	6.6	120
25	Efficient Gas Separation and Transport Mechanism in Rare Hemilabile Metal–Organic Framework. Chemistry of Materials, 2019, 31, 5856-5866.	3.2	18
26	Magnetic order in a Cull–Dylll oxamato-based two-dimensional coordination polymer. Comptes Rendus Chimie, 2019, 22, 466-475.	0.2	4
27	Metal–Organic Frameworks as Playgrounds for Reticulate Single-Molecule Magnets. Inorganic Chemistry, 2019, 58, 14498-14506.	1.9	23
28	Synthesis of a chiral rod-like metal–organic framework from a preformed amino acid-based hexanuclear wheel. Journal of Coordination Chemistry, 2019, 72, 1204-1221.	0.8	2
29	Deciphering the Electroluminescence Behavior of Silver(I) omplexes in Lightâ€Emitting Electrochemical Cells: Limitations and Solutions toward Highly Stable Devices. Advanced Functional Materials, 2019, 29, 1901797.	7.8	25
30	A Metalloligand Approach for the Self-Assembly of a Magnetic Two-Dimensional Grid-of-Grids. Crystal Growth and Design, 2019, 19, 3905-3912.	1.4	9
31	Influence of Xantphos Derivative Ligands on the Coordination in Their Copper(I) and Silver(I) Complexes. European Journal of Inorganic Chemistry, 2019, 2019, 2982-2989.	1.0	6
32	Self-Assembly of Catalytically Active Supramolecular Coordination Compounds within Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 10350-10360.	6.6	50
33	Direct Visualization of Pyrrole Reactivity upon Confinement within a Cyclodextrin Metal–Organic Framework. Angewandte Chemie, 2019, 131, 9277-9281.	1.6	5
34	Photoluminescent Cu(<scp>i</scp>) <i>vs.</i> Ag(<scp>i</scp>) complexes: slowing down emission in Cu(<scp>i</scp>) complexes by pentacoordinate low-lying excited states. Dalton Transactions, 2019, 48, 9765-9775.	1.6	16
35	Direct Visualization of Pyrrole Reactivity upon Confinement within a Cyclodextrin Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 9179-9183.	7.2	16
36	Halide-Controlled Extending–Shrinking Motion of a Covalent Cage. Journal of Organic Chemistry, 2019, 84, 4221-4228.	1.7	18

#	Article	IF	Citations
37	Coligand Effects on the Field-Induced Double Slow Magnetic Relaxation in Six-Coordinate Cobalt(II) Single-Ion Magnets (SIMs) with Positive Magnetic Anisotropy. Inorganic Chemistry, 2019, 58, 15726-15740.	1.9	35
38	Cu(II) complexes of cytosine and 1-methylcytosine with bromide: old motifs and new structures. Journal of Coordination Chemistry, 2018, 71, 615-632.	0.8	2
39	Crystallographic snapshots of host–guest interactions in drugs@metal–organic frameworks: towards mimicking molecular recognition processes. Materials Horizons, 2018, 5, 683-690.	6.4	64
40	Synthesis of Densely Packaged, Ultrasmall Pt ⁰ ₂ Clusters within a Thioetherâ€Functionalized MOF: Catalytic Activity in Industrial Reactions at Low Temperature. Angewandte Chemie, 2018, 130, 6294-6299.	1.6	22
41	Synthesis of Densely Packaged, Ultrasmall Pt ⁰ ₂ Clusters within a Thioetherâ€Functionalized MOF: Catalytic Activity in Industrial Reactions at Low Temperature. Angewandte Chemie - International Edition, 2018, 57, 6186-6191.	7.2	115
42	Metal–organic framework technologies for water remediation: towards a sustainable ecosystem. Journal of Materials Chemistry A, 2018, 6, 4912-4947.	5.2	369
43	Structural studies on Ba(II) adducts of the cytosine nucleobase and its derivative 1-Methylcytosine. Journal of Coordination Chemistry, 2018, 71, 828-844.	0.8	2
44	Efficient Capture of Organic Dyes and Crystallographic Snapshots by a Highly Crystalline Amino-Acid-Derived Metal-Organic Framework. Chemistry - A European Journal, 2018, 24, 17615-17615.	1.7	1
45	Confined Pt ₁ ¹⁺ Water Clusters in a MOF Catalyze the Lowâ€Temperature Water–Gas Shift Reaction with both CO ₂ Oxygen Atoms Coming from Water. Angewandte Chemie - International Edition, 2018, 57, 17094-17099.	7.2	54
46	Confined Pt ₁ ¹⁺ Water Clusters in a MOF Catalyze the Low‶emperature Water–Gas Shift Reaction with both CO ₂ Oxygen Atoms Coming from Water. Angewandte Chemie, 2018, 130, 17340-17345.	1.6	4
47	Stabilized Ru[(H ₂ O) ₆] ³⁺ in Confined Spaces (MOFs and Zeolites) Catalyzes the Imination of Primary Alcohols under Atmospheric Conditions with Wide Scope. ACS Catalysis, 2018, 8, 10401-10406.	5.5	31
48	Toward Engineering Chiral Rodlike Metal–Organic Frameworks with Rare Topologies. Inorganic Chemistry, 2018, 57, 12869-12875.	1.9	13
49	Lanthanide Discrimination with Hydroxyl-Decorated Flexible Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13895-13900.	1.9	24
50	Highly efficient temperature-dependent chiral separation with a nucleotide-based coordination polymer. Chemical Communications, 2018, 54, 6356-6359.	2.2	19
51	Isolated Fe(III)–O Sites Catalyze the Hydrogenation of Acetylene in Ethylene Flows under Front-End Industrial Conditions. Journal of the American Chemical Society, 2018, 140, 8827-8832.	6.6	74
52	Efficient Capture of Organic Dyes and Crystallographic Snapshots by a Highly Crystalline Aminoâ€Acidâ€Derived Metal–Organic Framework. Chemistry - A European Journal, 2018, 24, 17712-17718.	1.7	41
53	A post-synthetic approach triggers selective and reversible sulphur dioxide adsorption on a metal–organic framework. Chemical Communications, 2018, 54, 9063-9066.	2.2	22
54	Structurally characterized dipalladium(<scp>ii</scp>)-oxamate metallacyclophanes as efficient catalysts for sustainable Heck and Suzuki reactions in ionic liquids. Inorganic Chemistry Frontiers, 2018, 5, 2148-2156.	3.0	10

#	Article	IF	Citations
55	Halogenâ <halogen 2,2′-bipyrimidine-based="" cu<sup="" in="" interactions="" of="" one-dimensional="" self-assembly="" the="">IIRe^{IV} systems. CrystEngComm, 2018, 20, 4575-4581.</halogen>	1.3	8
56	Cytosine Nucleobase Ligand: A Suitable Choice for Modulating Magnetic Anisotropy in Tetrahedrally Coordinated Mononuclear Co ^{II} Compounds. Inorganic Chemistry, 2017, 56, 1857-1864.	1.9	34
57	Ïf-Hammett parameter: a strategy to enhance both photo- and electro-luminescence features of heteroleptic copper(<scp>i</scp>) complexes. Dalton Transactions, 2017, 46, 6312-6323.	1.6	51
58	Tuning the selectivity of light hydrocarbons in natural gas in a family of isoreticular MOFs. Journal of Materials Chemistry A, 2017, 5, 11032-11039.	5.2	36
59	Rational Synthesis of Chiral Metal–Organic Frameworks from Preformed Rodlike Secondary Building Units. Inorganic Chemistry, 2017, 56, 6551-6557.	1.9	27
60	The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nature Materials, 2017, 16, 760-766.	13.3	230
61	Enhancement of Intermolecular Magnetic Exchange through Halogen···Halogen Interactions in Bisadeninium Rhenium(IV) Salts. Crystal Growth and Design, 2017, 17, 5342-5348.	1.4	13
62	Fine-tuning of the confined space in microporous metal–organic frameworks for efficient mercury removal. Journal of Materials Chemistry A, 2017, 5, 20120-20125.	5.2	56
63	Postsynthetic Approach for the Rational Design of Chiral Ferroelectric Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8098-8101.	6.6	81
64	Solidâ€State Molecular Nanomagnet Inclusion into a Magnetic Metal–Organic Framework: Interplay of the Magnetic Properties. Chemistry - A European Journal, 2016, 22, 539-545.	1.7	61
65	Solvent-Dependent Self-Assembly of an Oxalato-Based Three-Dimensional Magnet Exhibiting a Novel Architecture. Inorganic Chemistry, 2016, 55, 6845-6847.	1.9	13
66	Solid-State Molecular Nanomagnet Inclusion into a Magnetic Metal-Organic Framework: Interplay of the Magnetic Properties. Chemistry - A European Journal, 2016, 22, 441-441.	1.7	2
67	Structural Studies on a New Family of Chiral BioMOFs. Crystal Growth and Design, 2016, 16, 5571-5578.	1.4	21
68	Selective and Efficient Removal of Mercury from Aqueous Media with the Highly Flexible Arms of a BioMOF. Angewandte Chemie, 2016, 128, 11333-11338.	1.6	40
69	Selective and Efficient Removal of Mercury from Aqueous Media with the Highly Flexible Arms of a BioMOF. Angewandte Chemie - International Edition, 2016, 55, 11167-11172.	7.2	158
70	Selective Guest Inclusion in Oxalate-Based Iron(III) Magnetic Coordination Polymers. Inorganic Chemistry, 2016, 55, 11160-11169.	1.9	8
71	Selective Gold Recovery and Catalysis in a Highly Flexible Methionine-Decorated Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 7864-7867.	6.6	196
72	Insights into the Dynamics of Grotthuss Mechanism in a Proton-Conducting Chiral <i>bio</i> MOF. Chemistry of Materials, 2016, 28, 4608-4615.	3.2	105

#	Article	IF	CITATIONS
73	Synthesis, Crystal Structure and Magnetic Properties of Heteropolynuclear Re ^{IV} M ^{II} Complexes Based on the Robust [ReCl ₅ (pyzCOO)] ^{2â€"} Unit (pyzCOO = 2â€pyrazinecarboxylate). European Journal of Inorganic Chemistry, 2016, 2016, 1835-1845.	1.0	6
74	Guest-dependent single-ion magnet behaviour in a cobalt(<scp>ii</scp>) metal–organic framework. Chemical Science, 2016, 7, 2286-2293.	3.7	110
75	Cytosine and 1-methylcytosine Mg(II) complexes: Structural insights on the reactivity of magnesium(II) toward nucleic acid constituents. Inorganica Chimica Acta, 2016, 452, 229-237.	1.2	9
76	Structural insight into the reaction mechanism of Pd-catalyzed nitrile hydration: Trapping the [Pd(H2O)4]2+ cation through a supramolecular complex. Inorganica Chimica Acta, 2016, 443, 267-273.	1.2	8
77	Anion-Assisted Crystallization of a Novel Type of Rhenium(IV)-Based Salt. Crystal Growth and Design, 2016, 16, 1812-1816.	1.4	11
78	Intermolecular interactions in dictating the self-assembly of halogen derivatives of bis-(N-substituted) Tj ETQq0 C	OfgBT/C	verlock 10 Tf
79	Fieldâ€Induced Slow Magnetic Relaxation in a Mononuclear Manganese(III)–Porphyrin Complex. Chemistry - A European Journal, 2015, 21, 17299-17307.	1.7	50
80	Towards a better understanding of honeycomb alternating magnetic networks. Dalton Transactions, 2015, 44, 11040-11051.	1.6	26
81	Metallosupramolecular approach toward multifunctional magnetic devices for molecular spintronics. Coordination Chemistry Reviews, 2015, 303, 110-138.	9.5	64
82	Homochiral self-assembly of biocoordination polymers: anion-triggered helicity and absolute configuration inversion. Chemical Science, 2015, 6, 4300-4305.	3.7	29
83	Heterotrimetallic Coordination Polymers: {Cu Ln Fe } Chains and {Ni Ln Fe } Layers: Synthesis, Crystal Structures, and Magnetic Properties. Chemistry - A European Journal, 2015, 21, 5429-5446.	1.7	71
84	Aquapentachlororhenate(<scp>iv</scp>): a singular and promising building block for metal assembly. RSC Advances, 2015, 5, 54936-54940.	1.7	4
85	A Chiral, Photoluminescent, and Spin-Canted {CulRelV2}n Branched Chain. Inorganic Chemistry, 2015, 54, 4594-4596.	1.9	16
86	Bis(N-substituted oxamate)palladate(<scp>ii</scp>) complexes as effective catalysts for sustainable Heck carbon–carbon coupling reactions in n-Bu ₄ NBr as the solvent. Inorganic Chemistry Frontiers, 2015, 2, 1029-1039.	3.0	21
87	Cation Exchange in Dynamic 3D Porous Magnets: Improvement of the Physical Properties. Inorganic Chemistry, 2015, 54, 10834-10840.	1.9	20
88	Dicopper(II) Anthraquinophanes as Multielectron Reservoirs for Oxidation and Reduction: A Joint Experimental and Theoretical Study. Chemistry - A European Journal, 2014, 20, 13965-13975.	1.7	15
89	Divergent Palladium Iodide Catalyzed Multicomponent Carbonylative Approaches to Functionalized Isoindolinone and Isobenzofuranimine Derivatives. Journal of Organic Chemistry, 2014, 79, 3506-3518.	1.7	94
90	Oxamato-based coordination polymers: recent advances in multifunctional magnetic materials. Chemical Communications, 2014, 50, 7569-7585.	2.2	103

#	Article	lF	CITATIONS
91	Bis(oxamato)palladate(II) complexes: synthesis, crystal structure and application to catalytic Suzuki reaction. Journal of Coordination Chemistry, 2014, 67, 4003-4015.	0.8	21
92	Ca ²⁺ metal ion adducts with cytosine, cytidine and cytidine 5′-monophosphate: a comprehensive study of calcium reactivity towards building units of nucleic acids. CrystEngComm, 2014, 16, 8286-8296.	1.3	13
93	Solid-state cis–trans isomerism in bis(oxamato)palladate(<scp>ii</scp>) complexes: synthesis, structural studies and catalytic activity. CrystEngComm, 2014, 16, 6971.	1.3	14
94	Sustainable carbon–carbon bond formation catalyzed by new oxamate-containing palladium(II) complexes in ionic liquids. Journal of Organometallic Chemistry, 2013, 743, 102-108.	0.8	69
95	Cubane-Type Cu ^{II} ₄ and Mn ^{II} ₂ Mn ^{III} ₂ Complexes Based on Pyridoxine: A Versatile Ligand for Metal Assembling. Inorganic Chemistry, 2013, 52, 11934-11943.	1.9	24
96	Multielectron transfer in a dicopper(ii) anthraquinophane. Chemical Communications, 2013, 49, 3534.	2.2	16
97	Enantioselective self-assembly of antiferromagnetic hexacopper(ii) wheels with chiral amino acid oxamates. Chemical Communications, 2013, 49, 5942.	2.2	24
98	Anion-Directed Self-Assembly of Unusual Discrete and One-Dimensional Copper(II) Complexes of 3,6-Bis($2\hat{a}\in^2$ -pyridyl)pyridazine. Crystal Growth and Design, 2013, 13, 270-281.	1.4	25
99	Ferromagnetic coupling and spin canting behaviour in heterobimetallic Re ^{IV} M ^{II/III} (M = Co ^{II/III} , Ni ^{II}) species. Dalton Transactions, 2013, 42, 1687-1695.	1.6	24
100	Dicopper(II) Metallacyclophanes with Oligo(p-phenylene-ethynylene) Spacers: Experimental Foundations and Theoretical Predictions on Potential Molecular Magnetic Wires. Inorganic Chemistry, 2013, 52, 7645-7657.	1.9	22
101	Synthesis, characterization and X-ray structure of glycosyl-1,2-isoxazoles and glycosyl-1,2-isoxazolines prepared via 1,3-dipolar cycloaddition. Journal of Molecular Structure, 2013, 1048, 130-137.	1.8	6
102	Slow Magnetic Relaxation in a Hydrogen-Bonded 2D Array of Mononuclear Dysprosium(III) Oxamates. Inorganic Chemistry, 2013, 52, 4777-4779.	1.9	37
103	Dicopper(II) Metallacyclophanes with Electroswitchable Polymethylâ€Substituted <i>para</i> \$\frac{1}{2}\$\$ \$\text{e}\$\$ \$e	1.7	25
104	Fieldâ€Induced Hysteresis and Quantum Tunneling of the Magnetization in a Mononuclear Manganese(III) Complex. Angewandte Chemie - International Edition, 2013, 52, 14075-14079.	7.2	150
105	New Family of Thiocyanate-Bridged Re(IV)-SCN-M(II) (M = Ni, Co, Fe, and Mn) Heterobimetallic Compounds: Synthesis, Crystal Structure, and Magnetic Properties. Inorganic Chemistry, 2012, 51, 5737-5747.	1.9	62
106	Synthesis, Structure, and Magnetic Properties of Regular Alternating μ-bpm/di-μ-X Copper(II) Chains (bpm) Tj	ЕТ <u>Р.</u> 90 0 (0 rgBT /Overlo
107	Hexachlororhenate(IV) salts of ruthenium(III) cations: X-ray structure and magnetic properties. Inorganica Chimica Acta, 2012, 380, 118-124.	1.2	33
108	Experimental, DFT and TD-DFT studies of rhenium complexes with thiocyanate ligands. Inorganica Chimica Acta, 2012, 387, 314-320.	1.2	17

#	Article	IF	CITATIONS
109	Very Long-Distance Magnetic Coupling in a Dicopper(II) Metallacyclophane with Extended π-Conjugated Diphenylethyne Bridges. Inorganic Chemistry, 2011, 50, 11279-11281.	1.9	21
110	Self-Assembled One- and Two-Dimensional Networks Based on NH $<$ sub $>$ 2 $<$ /sub $>$ Me $<$ sub $>$ 2 $<$ /sub $>$ [ReX $<$ sub $>$ 5 $<$ /sub $>$ (DMF)] (X = Cl and Br) Species: Polymorphism and Supramolecular Isomerism in Re(IV) Compounds. Crystal Growth and Design, 2011, 11, 1733-1741.	1.4	18
111	First Magnetostructural Study on a Heterodinuclear 2,2′-Bipyrimidine-Bridged Complex. Inorganic Chemistry, 2011, 50, 12405-12407.	1.9	14
112	Synthesis, crystal structure and magnetic properties of an oxalato-bridged Re ^{IV} Mo ^{VI} heterobimetallic complex. Dalton Transactions, 2011, 40, 4818-4820.	1.6	20
113	Flux growth and characterization of Ti- and Ni-doped enstatite single crystals. Journal of Crystal Growth, 2011, 329, 86-91.	0.7	7
114	Unexpected magnetic topology in the heterobimetallic [ReIVBr4($\hat{l}\frac{1}{4}$ -ox)CuII(bpy)2] compound. Inorganica Chimica Acta, 2011, 370, 394-397.	1.2	11
115	A Copper(II)-Cytidine Complex as a Building Unit for the Construction of an Unusual Three-Dimensional Coordination Polymer. Crystal Growth and Design, 2010, 10, 1757-1761.	1.4	23
116	A phenyl-salicyliden-imine as a suitable ligand to build functional materials. Inorganica Chimica Acta, 2009, 362, 247-252.	1.2	13
117	Copper(II) complexes with 2,5-bis(2-pyridyl)pyrazine and 1,1,3,3-tetracyano-2-ethoxypropenide anion: Syntheses, crystal structures and magnetic properties. Polyhedron, 2009, 28, 1287-1294.	1.0	28
118	Self-assembly of water cluster in iron(III) oxalate-bridged complexes. Polyhedron, 2009, 28, 2965-2972.	1.0	10
119	Heterotetranuclear Oxalato-Bridged Re ^{IV} ₃ M ^{II} (M = Mn, Fe, Co, Ni,) Tj ETQ 3027-3038.	q1 1 0.78 1.9	4314 rgBT /(58
120	Synthesis, crystal structure, electrochemical and magnetic properties of (NBu4)[ReCl5(L)] with L=pyrimidine and pyridazine. Polyhedron, 2008, 27, 552-558.	1.0	15
121	Magneto-structural study on a series of rhenium(IV) complexes containing biimH2, pyim and bipy ligands. Polyhedron, 2008, 27, 1447-1454.	1.0	21
122	Linkage isomerism in the metal complex hexa(thiocyanato)rhenate(IV): Synthesis and crystal structure of (NBu4)2[Re(NCS)6] and [Zn(NO3)(Me2phen)2]2[Re(NCS)5(SCN)]. Inorganica Chimica Acta, 2008, 361, 2715-2720.	1.2	22
123	Self-Assembly of a Chiral Carbonate- and Cytidine-Containing Dodecanuclear Copper(II) Complex: a Multiarm-Supplied Globular Capsule. Inorganic Chemistry, 2008, 47, 10229-10231.	1.9	30
124	New Extended Magnetic Systems Based on Oxalate and Iron(III) Ions. Inorganic Chemistry, 2008, 47, 3772-3786.	1.9	36
125	Synthesis, crystal structures and magnetic properties of tricyanomethanide-containing copper(II) complexes. Dalton Transactions, 2008, , 1583.	1.6	43
126	Guanine-containing copper(<scp>ii</scp>) complexes: synthesis, X-ray structures and magnetic properties. Dalton Transactions, 2008, , 514-520.	1.6	31

#	Article	IF	CITATIONS
127	Pentachloro(pyrazine)rhenate(iv) complex as precursor of heterobimetallic pyrazine-containing ReIV2MII (M = Ni, Cu) species: synthesis, crystal structures and magnetic properties. Dalton Transactions, 2008, , 4585.	1.6	32
128	A self-assembled tetrameric water cluster stabilized by the hexachlororhenate(IV) anion and diprotonated 2,2′-biimidazole: X-ray structure and magnetic properties. CrystEngComm, 2008, 10, 1284.	1.3	33
129	X-Ray structure of [ReCl ₄ (\hat{l}^{1} 4-ox)Cu(pyim) ₂]: a new heterobimetallic Re ^{IV} Cu ^{II} ferrimagnetic chain. Dalton Transactions, 2008, , 40-43.	1.6	31
130	Spin canting in an unprecedented three-dimensional pyrophosphate- and 2,2′-bipyrimidine-bridged cobalt(ii) framework. Dalton Transactions, 2008, , 5152.	1.6	39
131	2,3,5,6-Tetrakis(2-pyridyl)pyrazine (tppz)-containing iron(II) complexes: Syntheses and crystal structures. Polyhedron, 2007, 26, 5263-5270.	1.0	30
132	A novel series of rhenium-bipyrimidine complexes: synthesis, crystal structure and electrochemical properties. Dalton Transactions, 2007, , 653-660.	1.6	32
133	A New Octanuclear Copper(II)â^'Nucleoside Wheel. Journal of the American Chemical Society, 2007, 129, 2740-2741.	6.6	49
134	Supramolecular Assemblies of Nucleobase Derivative 1-Mecyt with Mg(II) and Ni(II) and Solid-State Transformation of Ni(II) Phase: $\hat{a} \in \mathbb{R}$ A Comprehensive Evidence of Their Different Reactivity toward 1-Mecyt [1-Mecyt = 1-Methylcytosine]. Crystal Growth and Design, 2007, 7, 609-612.	1.4	8
135	Ligand effects on the structures and magnetic properties of tricyanomethanide-containing copper(ii) complexes. Dalton Transactions, 2007, , 5190.	1.6	36
136	Metal–nucleobase interactions in magnesium(II) and manganese(II) complexes with adenine: Influence of the anion on the non-covalent stabilization of 7H-adenine tautomer. Polyhedron, 2007, 26, 4945-4954.	1.0	23
137	The counterion as a useful tool to obtain complexes of cytosine with alkali metal ions. New Journal of Chemistry, 2006, 30, 13-17.	1.4	22
138	A Heterotetranuclear [NillReIV3] Single-Molecule Magnet. Journal of the American Chemical Society, 2006, 128, 14218-14219.	6.6	87
139	Ligand Effects on the Structures of Extended Networks of Dicyanamide-Containing Transition-Metal lons. Inorganic Chemistry, 2006, 45, 4626-4636.	1.9	54
140	A Two-Dimensional ReIVAgI Compound:  X-ray Structure and Magnetic Properties. Crystal Growth and Design, 2006, 6, 2204-2206.	1.4	31
141	Ligand substitution reactions of the [ReX6]2â^' (X=Cl, Br) anions. Synthesis and crystal structure of novel oxalato complexes of rhenium(IV). Inorganica Chimica Acta, 2006, 359, 2194-2200.	1.2	28
142	Ligand substitution in hexahalorhenate(IV) complexes: Synthesis, crystal structures and magnetic properties of NBu4[ReX5(DMF)] (X=Cl and Br). Inorganica Chimica Acta, 2006, 359, 3291-3296.	1.2	20
143	Rhenium(IV) cyanate complexes: Synthesis, crystal structures and magnetic properties of NBu4[ReBr4(OCN)(DMF)] and (NBu4)2[ReBr(OCN)2(NCO)3]. Inorganica Chimica Acta, 2006, 359, 4343-4349.	1.2	28
144	Hexachlororhenate(IV) salts of organic radical cations. Inorganica Chimica Acta, 2005, 358, 3995-4002.	1.2	34

#	Article	IF	CITATIONS
145	Bis and tris(oxalato)ferrate(iii) complexes as precursors of polynuclear compounds. CrystEngComm, 2005, 7, 57.	1.3	33
146	Intermolecular Proton Transfer in Solid Phase:Â A Rare Example of Crystal-to-Crystal Transformation from Hydroxo- to Oxo-Bridged Iron(III) Molecule-Based Magnet. Journal of the American Chemical Society, 2005, 127, 10778-10779.	6.6	90
147	Synthesis, crystal structures and magnetic properties of cyanide- and phenolate-bridged [MIIINiII]2tetranuclear complexes (M = Fe and Cr). Dalton Transactions, 2005, , 1357-1364.	1.6	65
148	Self-Assembling of cytosine nucleoside into triply-bound dimers in acid Media. A comprehensive evaluation of proton-bound pyrimidine nucleosides by electrospray tandem mass spectrometry, X-rays diffractometry, and theoretical calculations. Journal of the American Society for Mass Spectrometry, 2004, 15, 268-279.	1.2	43
149	A novel supramolecular assembly in an iron(iii) compound exhibiting magnetic ordering at 70 K. Chemical Communications, 2004, , $1160-1161$.	2.2	30
150	The Cation as a Tool to Get Spin-Canted Three-Dimensional Iron(III) Networks. Inorganic Chemistry, 2004, 43, 5177-5179.	1.9	32
151	Rhenium(IV)â^'Copper(II) Heterobimetallic Complexes with a Bridge Malonato Ligand. Synthesis, Crystal Structure, and Magnetic Properties. Inorganic Chemistry, 2004, 43, 7823-7831.	1.9	46
152	Heterobimetallic Oxalato-Bridged MIIReIV Complexes (M = Mn, Fe, Co, Ni):  Synthesis, Crystal Structure, and Magnetic Properties. Inorganic Chemistry, 2003, 42, 1064-1069.	1.9	51
153	[Mnii2(bpym)(H2O)8]4+ and [Miv(CN)8]4– (M = Mo and W) as building blocks in designing bpym- and cyanide-bridged bimetallic three-dimensional networks (bpym = 2,2′-bipyrimidine)Electronic supplementary information (ESI) available: I‡MT vs. T for 2. See http://www.rsc.org/suppdata/ni/b2/b206124b/. New Journal of Chemistry. 2003. 27. 128-133.	1.4	35
154	Oxalate and 2,2′-bipyrimidine as bis-chelating ligands in the honeycomb layered compound {[Fe2(bpym)(ox)2]·5H2O}n. New Journal of Chemistry, 2003, 27, 161-165.	1.4	40
155	2,2′-Bipyrimidine- and 2,3-bis(2-pyridyl)pyrazine-containing manganese(ii) compounds: structural and magnetic properties. Dalton Transactions, 2003, , 4626-4634.	1.6	66
156	Novel Chiral Three-Dimensional Iron(III) Compound Exhibiting Magnetic Ordering at Tc = 40 K. Inorganic Chemistry, 2002, 41, 2007-2013.	1.9	92
157	[Cr(bpym)(C2O4)2]â^' in designing heterometallic complexes. Crystal structures and magnetic properties of PPh4[Cr(bpym)(C2O4)2]·H2O and [Ag(bpym)][Cr(C2O4)2](H2O)2]·2H2O (bpym=2,2′-bipyrimidine). Inorganica Chimica Acta, 2002, 336, 46-54.	1.2	44
158	Heterobimetallic Oxalato-Bridged CullReIVComplexes. Synthesis, Crystal Structure and Magnetic Properties. Inorganic Chemistry, 2001, 40, 4242-4249.	1.9	45
159	Polycatenane systems from Co(II) and trans-1,2-bis(4-pyridyl)ethene (bpe). Synthesis and structure of Co(bpe)2(NCS)2·CH3OH, [Co(bpe)2(H2O)2](ClO4)2·2CH3OH and [Co(bpe)2(H2O)2(CH3OH)2](ClO4)2·bpe·H2O. New Journal of Chemistry, 2001, 25, 1031-1036.	1.4	38
160	Syntheses, Crystal Structures, and Magnetic Properties of the Oxalato-Bridged Mixed-Valence Complexes [FeII(bpm)3]2[FeIII2(ox)5]ŷ8H2O and FeII(bpm)3Na(H2O)2Fe(ox)3·4H2O (bpm = 2,2'-Bipyrimidin Inorganic Chemistry, 2001, 40, 655-660.	n a) .9	48
161	New supramolecular complexes of manganese(II) and cobalt(II) with nucleic bases. Crystal structures of [M(H2O)6(1-Mecyt)6][ClO4]2·H2O, [Co(1-Mecyt)4][ClO4]2 and [M(H2O)4(cyt)2][ClO4]2·2cyt·2H2O [Mâ€=â€Coll or Mnll; cytâ€=â€cytosine; 1-Mecytâ€=â€1-methylcytosine]. Dalton Transactions RSC, 20	2.3 000, ,	24 1625-1629.
162	Two-Dimensional Assembling of (2,2â€-Bipyrimidine)bis(oxalato)chromate(III) Units through Alkaline Cations. Inorganic Chemistry, 1999, 38, 2234-2237.	1.9	53

#	Article	IF	CITATIONS
163	Novel Three-Dimensional Cage Assembly of a ν4-Carbonato-Bridged Cobalt(II) Compound [Co2(bpm)(H2O)2(CO3)(OH)]NO3·4H2O. Inorganic Chemistry, 1999, 38, 3744-3747.	1.9	39