
Josep Miquel Jornet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/646411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Terahertz band: Next frontier for wireless communications. Physical Communication, 2014, 12, 16-32.	1.2	1,162
2	Channel Modeling and Capacity Analysis for Electromagnetic Wireless Nanonetworks in the Terahertz Band. IEEE Transactions on Wireless Communications, 2011, 10, 3211-3221.	6.1	785
3	Electromagnetic wireless nanosensor networks. Nano Communication Networks, 2010, 1, 3-19.	1.6	599
4	The Internet of nano-things. IEEE Wireless Communications, 2010, 17, 58-63.	6.6	460
5	Graphene-based Plasmonic Nano-Antenna for Terahertz Band Communication in Nanonetworks. IEEE Journal on Selected Areas in Communications, 2013, 31, 685-694.	9.7	335
6	Graphene-based nano-patch antenna for terahertz radiation. Photonics and Nanostructures - Fundamentals and Applications, 2012, 10, 353-358.	1.0	331
7	Security and eavesdropping in terahertz wireless links. Nature, 2018, 563, 89-93.	13.7	279
8	Femtosecond-Long Pulse-Based Modulation for Terahertz Band Communication in Nanonetworks. IEEE Transactions on Communications, 2014, 62, 1742-1754.	4.9	271
9	Nanonetworks. Communications of the ACM, 2011, 54, 84-89.	3.3	250
10	TeraNets: ultra-broadband communication networks in the terahertz band. IEEE Wireless Communications, 2014, 21, 130-135.	6.6	227
11	Focused beam routing protocol for underwater acoustic networks. , 2008, , .		225
12	Realizing Ultra-Massive MIMO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si3.gif" display="inline" overflow="scroll"><mml:mrow><mml:mo>(</mml:mo><mml:mn>1024</mml:mn><mml:mo>×</mml:mo><m in the (0.06–10) Terahertz band. Nano Communication Networks, 2016, 8, 46-54.</m </mml:mrow></mml:math>	ıml:mn>10)24₹/mml:mn
13	Enabling Indoor Mobile Millimeter-wave Networks Based on Smart Reflect-arrays. , 2018, , .		211
14	Joint Energy Harvesting and Communication Analysis for Perpetual Wireless Nanosensor Networks in the Terahertz Band. IEEE Nanotechnology Magazine, 2012, 11, 570-580.	1.1	190
15	Interference and SINR in Millimeter Wave and Terahertz Communication Systems With Blocking and Directional Antennas. IEEE Transactions on Wireless Communications, 2017, 16, 1791-1808.	6.1	180
16	Terahertz Communication for Vehicular Networks. IEEE Transactions on Vehicular Technology, 2017, 66, 5617-5625.	3.9	180
17	Tunable topological charge vortex microlaser. Science, 2020, 368, 760-763.	6.0	180
18	Channel Model and Capacity Analysis of Molecular Communication with Brownian Motion. IEEE Communications Letters, 2012, 16, 797-800.	2.5	158

#	Article	IF	CITATIONS
19	Increasing indoor spectrum sharing capacity using smart reflect-array. , 2016, , .		153
20	PHLAME: A Physical Layer Aware MAC protocol for Electromagnetic nanonetworks in the Terahertz Band. Nano Communication Networks, 2012, 3, 74-81.	1.6	141
21	Wireless Communications for Optogenetics-Based Brain Stimulation: Present Technology and Future Challenges. IEEE Communications Magazine, 2018, 56, 218-224.	4.9	138
22	Terahertz Band Communication: An Old Problem Revisited and Research Directions for the Next Decade. IEEE Transactions on Communications, 2022, 70, 4250-4285.	4.9	135
23	Energy and spectrum-aware MAC protocol for perpetual wireless nanosensor networks in the Terahertz Band. Ad Hoc Networks, 2013, 11, 2541-2555.	3.4	128
24	Sensitive Detection of Exosomal Proteins via a Compact Surface Plasmon Resonance Biosensor for Cancer Diagnosis. ACS Sensors, 2018, 3, 1471-1479.	4.0	116
25	Toward End-to-End, Full-Stack 6G Terahertz Networks. IEEE Communications Magazine, 2020, 58, 48-54.	4.9	116
26	Capacity and throughput analysis of nanoscale machine communication through transparency windows in the terahertz band. Nano Communication Networks, 2014, 5, 72-82.	1.6	105
27	A routing framework for energy harvesting wireless nanosensor networks in the Terahertz Band. Wireless Networks, 2014, 20, 1169-1183.	2.0	100
28	Channel Capacity of Electromagnetic Nanonetworks in the Terahertz Band. , 2010, , .		99
29	A cross-layer communication module for the Internet of Things. Computer Networks, 2013, 57, 622-633.	3.2	95
30	Information capacity of pulse-based Wireless Nanosensor Networks. , 2011, , .		87
31	Terahertz Channel Model and Link Budget Analysis for Intrabody Nanoscale Communication. IEEE Transactions on Nanobioscience, 2017, 16, 491-503.	2.2	85
32	Graphene-based plasmonic nano-transceiver for terahertz band communication. , 2014, , .		84
33	Nano-Communication for Biomedical Applications: A Review on the State-of-the-Art From Physical Layers to Novel Networking Concepts. IEEE Access, 2016, 4, 3920-3935.	2.6	84
34	On Joint Frequency and Power Allocation in a Cross-Layer Protocol for Underwater Acoustic Networks. IEEE Journal of Oceanic Engineering, 2010, 35, 936-947.	2.1	82
35	Low-Weight Channel Coding for Interference Mitigation in Electromagnetic Nanonetworks in the Terahertz Band. , 2011, , .		74
36	The Internet of Multimedia Nano-Things. Nano Communication Networks, 2012, 3, 242-251.	1.6	66

#	Article	IF	CITATIONS
37	Ultra-Massive MIMO Channel Modeling for Graphene-Enabled Terahertz-Band Communications. , 2018, ,		66
38	Modeling and Performance Analysis of Metallic Plasmonic Nano-Antennas for Wireless Optical Communication in Nanonetworks. IEEE Access, 2017, 5, 6389-6398.	2.6	65
39	Low-weight error-prevention codes for electromagnetic nanonetworks in the Terahertz Band. Nano Communication Networks, 2014, 5, 35-44.	1.6	56
40	X60: A Programmable Testbed for Wideband 60ÂGHz WLANs with Phased Arrays. Computer Communications, 2019, 133, 77-88.	3.1	56
41	Mutual Coupling Reduction for Ultra-Dense Multi-Band Plasmonic Nano-Antenna Arrays Using Graphene-Based Frequency Selective Surface. IEEE Access, 2019, 7, 33214-33225.	2.6	56
42	TeraSim: An ns-3 extension to simulate Terahertz-band communication networks. Nano Communication Networks, 2018, 17, 36-44.	1.6	51
43	A new CubeSat design with reconfigurable multi-band radios for dynamic spectrum satellite communication networks. Ad Hoc Networks, 2019, 86, 166-178.	3.4	49
44	Intra-Body Optical Channel Modeling for In Vivo Wireless Nanosensor Networks. IEEE Transactions on Nanobioscience, 2016, 15, 41-52.	2.2	47
45	Intelligent Environments Based on Ultra-massive Mimo Platforms for Wireless Communication in Millimeter Wave and Terahertz Bands. , 2019, , .		47
46	Wave Propagation and Channel Modeling in Chip-Scale Wireless Communications: A Survey From Millimeter-Wave to Terahertz and Optics. IEEE Access, 2020, 8, 278-293.	2.6	47
47	Characterization of graphene-based nano-antennas in the terahertz band. , 2012, , .		46
48	Design and Operation of a Graphene-Based Plasmonic Nano-Antenna Array for Communication in the Terahertz Band. IEEE Journal on Selected Areas in Communications, 2020, 38, 2104-2117.	9.7	46
49	A Comprehensive Survey on Hybrid Communication in Context of Molecular Communication and Terahertz Communication for Body-Centric Nanonetworks. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 107-133.	1.4	44
50	TAB-MAC: Assisted beamforming MAC protocol for Terahertz communication networks. Nano Communication Networks, 2016, 9, 36-42.	1.6	42
51	Exploiting Multipath Terahertz Communications for Physical Layer Security in Beyond 5G Networks. , 2019, , .		40
52	Expedited Neighbor Discovery in Directional Terahertz Communication Networks Enhanced by Antenna Side-Lobe Information. IEEE Transactions on Vehicular Technology, 2019, 68, 7804-7814.	3.9	38
53	Capacity and Outage of Terahertz Communications With User Micro-Mobility and Beam Misalignment. IEEE Transactions on Vehicular Technology, 2020, 69, 6822-6827.	3.9	37
54	Photothermal Modeling and Analysis of Intrabody Terahertz Nanoscale Communication. IEEE Transactions on Nanobioscience, 2017, 16, 755-763.	2.2	36

#	Article	IF	CITATIONS
55	The TeraNova platform: An integrated testbed for ultra-broadband wireless communications at true Terahertz frequencies. Computer Networks, 2020, 179, 107370.	3.2	36
56	Nanoscale Optical Wireless Channel Model for Intra-Body Communications: Geometrical, Time, and Frequency Domain Analyses. IEEE Transactions on Communications, 2018, 66, 1579-1593.	4.9	35
57	End-to-End Noise Model for Intra-Body Terahertz Nanoscale Communication. IEEE Transactions on Nanobioscience, 2018, 17, 464-473.	2.2	35
58	Hierarchical Bandwidth Modulation for Ultra-Broadband Terahertz Communications. , 2019, , .		34
59	Ultrafast control of fractional orbital angular momentum of microlaser emissions. Light: Science and Applications, 2020, 9, 179.	7.7	34
60	A Link-Layer Synchronization and Medium Access Control Protocol for Terahertz-Band Communication Networks. IEEE Transactions on Mobile Computing, 2021, 20, 2-18.	3.9	34
61	X60., 2017,,.		33
62	On the Achievable Throughput of Energy-Harvesting Nanonetworks in the Terahertz Band. IEEE Sensors Journal, 2018, 18, 902-912.	2.4	33
63	A joint energy harvesting and consumption model for self-powered nano-devices in nanonetworks. , 2012, , .		32
64	Joint physical and link layer error control analysis for nanonetworks in the Terahertz band. Wireless Networks, 2016, 22, 1221-1233.	2.0	32
65	Powering In-Body Nanosensors With Ultrasounds. IEEE Nanotechnology Magazine, 2016, 15, 151-154.	1.1	32
66	Multi-layer Intrabody Terahertz Wave Propagation Model for Nanobiosensing Applications. Nano Communication Networks, 2017, 14, 9-15.	1.6	31
67	A receiver architecture for pulse-based electromagnetic nanonetworks in the Terahertz Band. , 2012, , .		30
68	Channel Modeling and Performance Analysis of Airplane-Satellite Terahertz Band Communications. IEEE Transactions on Vehicular Technology, 2021, 70, 2047-2061.	3.9	30
69	Wireless Optogenetic Nanonetworks for Brain Stimulation: Device Model and Charging Protocols. IEEE Transactions on Nanobioscience, 2017, 16, 859-872.	2.2	29
70	Superabsorbing Metasurfaces with Hybrid Ag–Au Nanostructures for Surfaceâ€Enhanced Raman Spectroscopy Sensing of Drugs and Chemicals. Small Methods, 2018, 2, 1800045.	4.6	29
71	Stochastic Interference Modeling and Experimental Validation for Pulse-Based Terahertz Communication. IEEE Transactions on Wireless Communications, 2019, 18, 4103-4115.	6.1	27
72	Plasmonic HEMT Terahertz Transmitter based on the Dyakonov-Shur Instability: Performance Analysis and Impact of Nonideal Boundaries. Physical Review Applied, 2018, 10, .	1.5	26

#	Article	IF	CITATIONS
73	Graphene-based plasmonic phase modulator for Terahertz-band communication. , 2016, , .		24
74	Lithographically Defined Plasmonic Graphene Antennas for Terahertz-Band Communication. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1553-1556.	2.4	24
75	Design of graphene-based plasmonic nano-antenna arrays in the presence of mutual coupling. , 2017, , .		24
76	The effect of small-scale mobility on terahertz band communications. , 2018, , .		24
77	Directional Terahertz Communication Systems for 6G: Fact Check. IEEE Vehicular Technology Magazine, 2021, 16, 68-77.	2.8	24
78	A versatile experimental testbed for ultrabroadband communication networks above 100 GHz. Computer Networks, 2021, 193, 108092.	3.2	23
79	THz Technology for Space Communications. , 2018, , .		21
80	Plasmonic Interferometer Array Biochip as a New Mobile Medical Device for Cancer Detection. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-7.	1.9	21
81	PHLAME: A physical layer aware MAC protocol for electromagnetic nanonetworks. , 2011, , .		20
82	Distributed Timely Throughput Optimal Scheduling for the Internet of Nano-Things. IEEE Internet of Things Journal, 2016, 3, 1202-1212.	5.5	20
83	Interference Analysis of EHF/THF Communications Systems with Blocking and Directional Antennas. , 2016, , .		19
84	Experimental Demonstration of Ultra-broadband Wireless Communications at True Terahertz Frequencies. , 2019, , .		19
85	THz Communications for Mobile Heterogeneous Networks. , 2018, 56, 94-95.		19
86	Distributed power control for underwater acoustic networks. , 2008, , .		18
87	Scattering of terahertz radiation on a graphene-based nano-antenna. AIP Conference Proceedings, 2011, , .	0.3	18
88	Wireless optogenetic neural dust for deep brain stimulation. , 2016, , .		18
89	Nanonetworks in Biomedical Applications. Current Drug Targets, 2019, 20, 800-807.	1.0	18
90	Metallic Plasmonic Nano-antenna for Wireless Optical Communication in Intra-body Nanonetworks. , 2015, , .		18

#	Article	IF	CITATIONS
91	Fundamentals of Electromagnetic Nanonetworks in the Terahertz Band. Foundations and Trends in Networking, 2012, 7, 77-233.	10.2	17
92	A Link-Layer Synchronization and Medium Access Control Protocol for Terahertz-Band Communication Networks. , 2015, , .		17
93	Cross-layer analysis of optimal relaying strategies for terahertz-band communication networks. , 2017, , .		17
94	Multi-hop Deflection Routing Algorithm Based on Reinforcement Learning for Energy-Harvesting Nanonetworks. IEEE Transactions on Mobile Computing, 2020, , 1-1.	3.9	17
95	Brain Organoids: Expanding Our Understanding of Human Development and Disease. Results and Problems in Cell Differentiation, 2018, 66, 183-206.	0.2	16
96	Optimizing Link Sleeping Reconfigurations in ISP Networks with Off-Peak Time Failure Protection. IEEE Transactions on Network and Service Management, 2013, 10, 176-188.	3.2	15
97	Hydrodynamic theory of the Dyakonov-Shur instability in graphene transistors. Physical Review B, 2021, 104, .	1.1	15
98	UWB Short-Range Bifocusing Tomographic Imaging. IEEE Transactions on Instrumentation and Measurement, 2008, 57, 2414-2420.	2.4	14
99	Nanodevice Arrays for Peripheral Nerve Fascicle Activation Using Ultrasound Energy-Harvesting. IEEE Nanotechnology Magazine, 2017, 16, 919-930.	1.1	14
100	Scalability of the Channel Capacity in Graphene-enabled Wireless Communications to the Nanoscale. IEEE Transactions on Communications, 2014, , 1-1.	4.9	13
101	Joint Synchronization and Symbol Detection Design for Pulse-Based Communications in the THz Band. , 2015, , .		13
102	On-Chip Wireless Optical Channel Modeling for Massive Multi-Core Computing Architectures. , 2017, , .		13
103	Characterising THz propagation and intrabody thermal absorption in iWNSNs. IET Microwaves, Antennas and Propagation, 2018, 12, 525-532.	0.7	13
104	Optogenomic Interfaces: Bridging Biological Networks With the Electronic Digital World. Proceedings of the IEEE, 2019, 107, 1387-1401.	16.4	13
105	On the feeding mechanisms for graphene-based THz plasmonic nano-antennas. , 2015, , .		12
106	On the Use of Integral Geometry for Interference Modeling and Analysis in Wireless Networks. IEEE Communications Letters, 2016, 20, 2530-2533.	2.5	12
107	A Hybrid Intelligent Reflecting Surface with Graphene-based Control Elements for THz Communications. , 2020, , .		12
108	Experimental Wireless Testbed for Ultrabroadband Terahertz Networks. , 2020, , .		12

7

#	Article	IF	CITATIONS
109	Spectrum Allocation With Adaptive Sub-Band Bandwidth for Terahertz Communication Systems. IEEE Transactions on Communications, 2022, 70, 1407-1422.	4.9	12
110	Guest Editorial Special Issue on the Internet of Nano Things. IEEE Internet of Things Journal, 2016, 3, 1-3.	5.5	11
111	Analysis of Light Propagation on Physiological Properties of Neurons for Nanoscale Optogenetics. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 108-117.	2.7	11
112	ADAPT: An Adaptive Directional Antenna Protocol for medium access control in Terahertz communication networks. Ad Hoc Networks, 2021, 119, 102540.	3.4	10
113	Stochastic multipath channel modeling and power delay profile analysis for terahertz-band communication. , 2017, , .		10
114	Dynamic spectrum sharing between active and passive users above 100 GHz. , 2022, 1, .		10
115	Bio-electromagnetic THz propagation modeling for in-vivo wireless nanosensor networks. , 2017, , .		9
116	Increasing the Communication Distance Between Nano-Biosensing Implants and Wearable Devices. , 2018, , .		9
117	Global Genome Conformational Programming during Neuronal Development Is Associated with CTCF and Nuclear FGFR1—The Genome Archipelago Model. International Journal of Molecular Sciences, 2021, 22, 347.	1.8	9
118	Nano-cameras. , 2018, , .		9
119	Multi-Hop Relaying Distribution Strategies for Terahertz-Band Communication Networks: A Cross-Layer Analysis. IEEE Transactions on Wireless Communications, 2022, 21, 5075-5089.	6.1	9
120	TeraSim: An ns-3 extension to simulate Terahertz-band communication networks. Software Impacts, 2019, 1, 100004.	0.8	8
121	Performance Analysis of a Dual Terahertz/Ka Band Communication System for Satellite Mega-Constellations. , 2021, , .		8
122	FGOR: Flow-Guided Opportunistic Routing for Intrabody Nanonetworks. IEEE Internet of Things Journal, 2022, 9, 21765-21776.	5.5	8
123	Cooperative Raman Spectroscopy for Real-Time <italic>In Vivo</italic> Nano-Biosensing. IEEE Transactions on Nanobioscience, 2017, 16, 571-584.	2.2	7
124	Nanoscale optical channel modeling for in vivo wireless nanosensor networks: A geometrical approach. , 2017, , .		7
125	Deep-Learning-Based Resource Allocation for Multi-Band Communications in CubeSat Networks. , 2019, , .		7
126	Real-Time Digital Baseband System for Ultra-Broadband THz Communication. , 2020, , .		7

Real-Time Digital Baseband System for Ultra-Broadband THz Communication. , 2020, , . 126

#	Article	IF	CITATIONS
127	Ultrabroadband Spread Spectrum Techniques for Secure Dynamic Spectrum Sharing Above 100 GHz Between Active and Passive Users. , 2021, , .		7
128	leee Access Special Section Editorial: Nano-Antennas, Nano-Transceivers and Nano-Networks/Communications. IEEE Access, 2018, 6, 8270-8272.	2.6	6
129	Dynamic Beamforming Algorithms for Ultra-directional Terahertz Communication Systems Based on Graphene-based Plasmonic Nano-antenna Arrays. , 2018, , .		6
130	Beamforming optical antenna arrays for nano-bio sensing and actuation applications. Nano Communication Networks, 2021, 29, 100363.	1.6	6
131	Modeling and performance analysis of a reconfigurable plasmonic nano-antenna array architecture for terahertz communications. , 2018, , .		6
132	Design and performance analysis of ultra-massive multi-carrier multiple input multiple output communications in the terahertz band. Proceedings of SPIE, 2017, , .	0.8	5
133	Multi-hop Deflection Routing Algorithm Based on Q-Learning for Energy-Harvesting Nanonetworks. , 2018, , .		5
134	An On-Chip Amplitude and Frequency Modulating Graphene-based Plasmonic Terahertz Signal Nano-Generator. , 2021, , .		5
135	A Real-Time Ultra-broadband Software-Defined Radio Platform for Terahertz Communications. , 2022, ,		5
136	Leveraging Antenna Side-Lobe Information for Expedited Neighbor Discovery in Directional Terahertz Communication Networks. , 2018, , .		4
137	Routing Protocol Design for Directional and Buffer-limited Terahertz Communication Networks. , 2020, , .		4
138	Asymmetrically Engineered Nanoscale Transistors for On-Demand Sourcing of Terahertz Plasmons. Nano Letters, 2022, 22, 2674-2681.	4.5	4
139	Packet size optimization for wireless nanosensor networks in the Terahertz band. , 2016, , .		3
140	An optofluidic channel model for in vivo nanosensor networks in human blood. , 2017, , .		3
141	Poster: X60. , 2017, , .		3
142	On the photo-thermal effect of intra-body nano-optical communications on red blood cells. , 2018, , .		3
143	Uplink Multi-User Beamforming on Single RF Chain mmWave WLANs. , 2021, , .		3

1

#	Article	IF	CITATIONS
145	Graphene-based frequency selective surface decoupling structure for ultra-dense multi-band plasmonic nano-antenna arrays. , 2018, , .		3
146	Data signals for Terahertz communications research. Computer Networks, 2022, 203, 108628.	3.2	3
147	An Optimized M-ary Amplitude Phase Shift Keying Scheme for Ultrabroadband Terahertz Communication. , 2022, , .		3
148	Extracting complex optical properties of ultra-thin conductors using time-domain THz spectroscopy. , 2016, , .		2
149	An energy-efficient source-anonymity protocol in surveillance systems. Personal and Ubiquitous Computing, 2016, 20, 771-783.	1.9	2
150	Temporal dynamics of frequency-tunable graphene-based plasmonic grating structures for ultra-broadband terahertz communication. Proceedings of SPIE, 2017, , .	0.8	2
151	Design and Operation of a Smart Graphene–Metal Hybrid Reflectarray at THz Frequencies. , 2020, , .		2
152	Low-weight Channel Codes for Error Prevention in Electromagnetic Nanonetworks in the Terahertz Band. , 2007, , .		2
153	Interconnecting wearable devices with nano-biosensing implants through optical wireless communications. , 2018, , .		2
154	Stochastic noise model for intra-body terahertz nanoscale communication. , 2018, , .		2
155	Hybridization of plasmon modes in multishell bimetallic nanoparticles: a numerical study. Journal of Nanophotonics, 2020, 14, 1.	0.4	2
156	Compact High-Gain Dual-Band Antenna for Full-Duplex Terahertz Communication in CubeSat Mega-Constellations. , 2021, , .		2
157	Stochastic Geometry Framework for THz Satellite-Airplane Network Analysis. , 2021, , .		2
158	Scaling mmWave WLANs With Single RF Chain Multiuser Beamforming. IEEE/ACM Transactions on Networking, 2022, , 1-14.	2.6	2
159	Joint Synchronization and Symbol Detection Design for Pulse-Based Communications in the THz Band. , 2014, , .		1
160	Multi-physics analysis of hybrid graphene/semiconductor plasmonic terahertz sources (Conference) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
161	A cooperative Raman spectrum reconstruction platform for real-time in-vivo nano-biosensing. , 2017, , .		1

162 Through-the-Body Localization of Implanted Biochip in Wearable Nano-Biosensing Networks. , 2018, , .

#	Article	IF	CITATIONS
163	Nanoscale Terahertz Communications. , 2018, , 1-6.		1
164	Realizing Asymmetric Boundary Conditions for Plasmonic THz Wave Generation in HEMTs. , 2019, , .		1
165	Xilinx RF-SoC-based Digital Multi-Beam Array Processors for 28/60 GHz Wireless Testbeds. , 2020, , .		1
166	Joint Nanoscale Communication and Sensing Enabled by Plasmonic Nano-antennas. , 2021, , .		1
167	Brain-Machine Interfaces. , 2018, , 1-5.		1
168	Chirp Spread Spectrum Modulation for Intrabody Nanoscale Communication and Sensing. , 2021, , .		1
169	Experimental Demonstration of Multiple Input Multiple Output Communications above 100 GHz. , 2022, , \cdot		1
170	Welcome from the Program Co-chairs. , 2009, , .		0
171	A Link-Layer Synchronization and Medium Access Control Protocol for Terahertz-Band Communication Networks. , 2014, , .		0
172	Editorial: Receiving the Baton. Nano Communication Networks, 2016, 9, v-vi.	1.6	0
173	Hybrid graphene/semiconductor plasmonic technology for ultra-broadband terahertz communications. , 2017, , .		Ο
174	Graphene-Based Spiral Nanoantenna for Intrabody Communication at Terahertz. , 2018, , .		0
175	Nanonetworks. , 2018, , 1-8.		Ο
176	Sensors: Superabsorbing Metasurfaces with Hybrid Ag-Au Nanostructures for Surface-Enhanced Raman Spectroscopy Sensing of Drugs and Chemicals (Small Methods 7/2018). Small Methods, 2018, 2, 1800037.	4.6	0
177	Channel Impulse Analysis of Light Propagation for Point-to-Point Nano Communications Through Cortical Neurons. IEEE Transactions on Communications, 2020, 68, 7111-7122.	4.9	О
178	Vortex microlaser with ultrafast tunability. , 2021, , .		0
179	Nanoscale broadband terahertz communication. SPIE Newsroom, 0, , .	0.1	0
180	Prospects for the application of two-dimensional materials to terahertz-band communications. , 2017, , \cdot		0

#	Article	IF	CITATIONS
181	Integrated genome regulation of brain development. , 2018, , .		Ο
182	Graphene characterization using time-domain terahertz spectroscopy for plasmonic antenna design. , 2018, , .		0
183	Experimental characterization of a hybrid graphene/metal plasmonic antenna array. , 2018, , .		0
184	Nanoscale Terahertz Communications. , 2020, , 955-960.		0
185	Nanonetworks. , 2020, , 955-955.		0
186	Brain-Machine Interfaces. , 2020, , 134-138.		0
187	A Plasmonic Array Architecture for Multi-Beam Spatial Multiplexing at THz Frequencies. , 2020, , .		0
188	Terahertz Communications: From Nanomaterials to Ultrabroadband Networks. , 2020, , .		0