Ozlem Sel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6463812/publications.pdf

Version: 2024-02-01

430874 434195 1,051 54 18 31 h-index citations g-index papers 54 54 54 1322 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Aqueous Multivalent Charge Storage Mechanism in Aromatic Diamine-Based Organic Electrodes. ACS Applied Materials & Electrodes, 2022, 14, 8508-8520.	8.0	12
2	Interfacial charge storage mechanisms of composite electrodes based on poly(<i>ortho</i> -phenylenediamine)/carbon nanotubes via advanced electrogravimetry. Journal of Chemical Physics, 2022, 156, 124703.	3.0	5
3	lon Dynamics at the Carbon Electrode/Electrolyte Interface: Influence of Carbon Nanotubes Types. Materials, 2022, 15, 1867.	2.9	6
4	Interface evolution and performance degradation in LiCoO2 composite battery electrodes monitoredÂby advanced EQCM. Electrochimica Acta, 2022, 413, 140171.	5. 2	1
5	Probing the Electrode–Electrolyte Interface of a Model K-lon Battery Electrode─The Origin of Rate Capability Discrepancy between Aqueous and Non-Aqueous Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 20835-20847.	8.0	4
6	Towards a high MnO ₂ loading and gravimetric capacity from proton-coupled Mn ⁴⁺ /Mn ²⁺ reactions using a 3D free-standing conducting scaffold. Journal of Materials Chemistry A, 2021, 9, 1500-1506.	10.3	12
7	Single Wall Carbon Nanotubes/Polypyrrole Composite Thin Film Electrodes: Investigation of Interfacial Ion Exchange Behavior. Journal of Composites Science, 2021, 5, 25.	3.0	2
8	Poly(<i>ortho</i> -phenylenediamine) overlaid fibrous carbon networks exhibiting a synergistic effect for enhanced performance in hybrid micro energy storage devices. Journal of Materials Chemistry A, 2021, 9, 10487-10496.	10.3	5
9	Scrutiny of the LiCoO ₂ Composite Electrode/Electrolyte Interface by Advanced Electrogravimetry and Implications for Aqueous Li-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 3859-3867.	3.1	7
10	Preventing Graphene from Restacking <i>via</i> Bioinspired Chemical Inserts: Toward a Superior 2D Micro-supercapacitor Electrode. ACS Applied Nano Materials, 2021, 4, 4964-4973.	5.0	10
11	Electrosynthesis of hierarchical Cu2O–Cu(OH)2 nanodendrites supported on carbon nanofibers/poly(para-phenylenediamine) nanocomposite as high-efficiency catalysts for methanol electrooxidation. International Journal of Hydrogen Energy, 2021, 46, 19926-19938.	7.1	16
12	Scrutiny of Electrode/Electrolyte Interfaces and Electrode Degradation Mechanisms By Advanced Electrogravimetry: Implications in Energy Storage. ECS Meeting Abstracts, 2021, MA2021-02, 45-45.	0.0	O
13	High Performance 2D Micro-Supercapacitor Electrode Composed of Graphene with Polydopamine As Inserts. ECS Meeting Abstracts, 2021, MA2021-02, 536-536.	0.0	1
14	Elucidating the Origin of the Electrochemical Capacity in a Proton-Based Battery H _{<i>x</i>} IrO ₄ via Advanced Electrogravimetry. ACS Applied Materials & mp; Interfaces, 2020, 12, 4510-4519.	8.0	18
15	Prompt microwave-assisted synthesis of carbon coated Si nanocomposites as anode for lithium-ion batteries. Solid State Ionics, 2020, 354, 115409.	2.7	12
16	Electrically Conductive Thin Films Based on Nanofibrillated Cellulose: Interactions with Water and Applications in Humidity Sensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36437-36448.	8.0	20
17	Making Advanced Electrogravimetry as an Affordable Analytical Tool for Battery Interface Characterization. Analytical Chemistry, 2020, 92, 13803-13812.	6.5	17
18	Deciphering the Influence of Electrolytes on the Energy Storage Mechanism of Vertically-Oriented Graphene Nanosheet Electrodes by Using Advanced Electrogravimetric Methods. Nanomaterials, 2020, 10, 2451.	4.1	0

#	Article	IF	CITATIONS
19	Insights into Redox Reactions and Ionic Transfers in Nickel/Iron Layered Double Hydroxide in Potassium Hydroxide. Journal of Physical Chemistry C, 2020, 124, 3037-3049.	3.1	9
20	Synthesis of carbon nanofibers/poly(para-phenylenediamine)/nickel particles nanocomposite for enhanced methanol electrooxidation. International Journal of Hydrogen Energy, 2019, 44, 24534-24545.	7.1	30
21	Charge Storage Properties of Nanostructured Poly (3,4–ethylenedioxythiophene) Electrodes Revealed by Advanced Electrogravimetry. Nanomaterials, 2019, 9, 962.	4.1	4
22	Correlation between the interfacial ion dynamics and charge storage properties of poly(ortho-phenylenediamine) electrodes exhibiting high cycling stability. Journal of Power Sources, 2019, 438, 227032.	7.8	9
23	lon Dynamics at the Single Wall Carbon Nanotube Based Composite Electrode/Electrolyte Interface: Influence of the Cation Size and Electrolyte pH. Journal of Physical Chemistry C, 2019, 123, 4262-4273.	3.1	9
24	Electrochemically Reduced Graphene Oxideâ€Sheltered ZnO Nanostructures Showing Enhanced Electrochemical Performance Revealed by an In Situ Electrogravimetric Study. Advanced Materials Interfaces, 2019, 6, 1801855.	3.7	5
25	Understanding the energy storage mechanisms of poly(3,4-ethylenedioxythiophene)-coated silicon nanowires by electrochemical quartz crystal microbalance. Materials Letters, 2019, 240, 59-61.	2.6	13
26	Tuning Charge Storage Properties of Supercapacitive Electrodes Evidenced by In Situ Gravimetric and Viscoelastic Explorations. Analytical Chemistry, 2019, 91, 2885-2893.	6.5	16
27	In-situ tracking of NaFePO4 formation in aqueous electrolytes and its electrochemical performances in Na-ion/polysulfide batteries. Journal of Power Sources, 2019, 412, 55-62.	7.8	30
28	Charge storage properties of single wall carbon nanotubes/Prussian blue nanocube composites studied by multi-scale coupled electrogravimetric methods. Electrochimica Acta, 2018, 271, 297-304.	5.2	7
29	Tracking the interfacial charge transfer behavior of hydrothermally synthesized ZnO nanostructures <i>via</i> complementary electrogravimetric methods. Physical Chemistry Chemical Physics, 2018, 20, 27140-27148.	2.8	7
30	Enhanced proton transport properties of Nafion via functionalized halloysite nanotubes. International Journal of Hydrogen Energy, 2018, 43, 18578-18591.	7.1	20
31	Electrochemical and viscoelastic evolution of dodecyl sulfate-doped polypyrrole films during electrochemical cycling. Electrochimica Acta, 2017, 233, 262-273.	5.2	16
32	Dynamic Resolution of Ion Transfer in Electrochemically Reduced Graphene Oxides Revealed by Electrogravimetric Impedance. Journal of Physical Chemistry C, 2017, 121, 9370-9380.	3.1	23
33	Correlation between the proton conductivity and diffusion coefficient of sulfonic acid functionalized chitosan and Nafion composites via impedance spectroscopy measurements. Ionics, 2017, 23, 2221-2227.	2.4	2
34	Sulfonic Acid Functionalized Chitosan as a Sustainable Component for Proton Conductivity Management in PEMs. ChemistrySelect, 2017, 2, 2503-2511.	1.5	8
35	Poly(neutral red) on passivated nickel films. New insights through EQCM measurements. Russian Journal of Electrochemistry, 2016, 52, 1137-1149.	0.9	3
36	Gravimetric and dynamic deconvolution of global EQCM response of carbon nanotube based electrodes by Ac-electrogravimetry. Electrochemistry Communications, 2016, 70, 73-77.	4.7	40

#	Article	IF	CITATIONS
37	Dynamic Characterization of Inter- and Intralamellar Domains of Cobalt-Based Layered Double Hydroxides upon Electrochemical Oxidation. Chemistry of Materials, 2016, 28, 7793-7806.	6.7	28
38	Proton Transport in Electrospun Hybrid Organic–Inorganic Membranes: An Illuminating Paradox. Advanced Functional Materials, 2016, 26, 594-604.	14.9	14
39	Formation and transformation of a short range ordered iron carbonate precursor. Geochimica Et Cosmochimica Acta, 2015, 164, 94-109.	3.9	39
40	Ion intercalation dynamics of electrosynthesized mesoporous WO ₃ thin films studied by multi-scale coupled electrogravimetric methods. Physical Chemistry Chemical Physics, 2015, 17, 14773-14787.	2.8	19
41	Proton Diffusion Coefficient in Electrospun Hybrid Membranes by Electrochemical Impedance Spectroscopy. Langmuir, 2015, 31, 9737-9741.	3.5	4
42	New Insights into Pseudocapacitive Charge-Storage Mechanisms in Li-Birnessite Type MnO ₂ Monitored by Fast Quartz Crystal Microbalance Methods. Journal of Physical Chemistry C, 2014, 118, 26551-26559.	3.1	49
43	Determination of the Diffusion Coefficient of Protons in Nafion Thin Films by <i>ac</i> -Electrogravimetry. Langmuir, 2013, 29, 13655-13660.	3.5	30
44	Frequency/voltage conversion circuit for alternating current electrogravimetry. Electronics Letters, 2013, 49, 1064-1066.	1.0	2
45	Amorphous iron (II) carbonate: Crystallization energetics and comparison to other carbonate minerals related to CO2 sequestration. Geochimica Et Cosmochimica Acta, 2012, 87, 61-68.	3.9	53
46	Original Fuel ell Membranes from Crosslinked Terpolymers via a "Sol–gel―Strategy. Advanced Functional Materials, 2010, 20, 1090-1098.	14.9	53
47	Proton transport properties in hybrid membranes investigated by ac-electrogravimetry. Electrochemistry Communications, 2010, 12, 1136-1139.	4.7	19
48	Design and Development of High-Performance Hybrid Inorganic-Organic Fuel Cell Membranes. ECS Transactions, 2009, 25, 1091-1099.	0.5	0
49	Design, Synthesis, Structural and Textural Characterization, and Electrical Properties of Mesoporous Thin Films Made of Rare Earth Oxide Binaries. Chemistry of Materials, 2009, 21, 2184-2192.	6.7	39
50	Designing meso- and macropore architectures in hybrid organic–inorganic membranes by combining surfactant and breath figure templating (BFT). Physical Chemistry Chemical Physics, 2009, 11, 3733.	2.8	29
51	Pore Hierarchy in Mesoporous Silicas Evidenced by In-Situ SANS during Nitrogen Physisorption. Langmuir, 2007, 23, 4724-4727.	3.5	45
52	Binding of Ion Pairs onto Polymer Gels via Dehydration Entropy:Â A New Mechanism for Ion Exchange. Macromolecules, 2006, 39, 6310-6312.	4.8	12
53	Principles of Hierarchical Meso- and Macropore Architectures by Liquid Crystalline and Polymer Colloid Templating. Langmuir, 2006, 22, 2311-2322.	3.5	169
54	Preparation of a large Mesoporous CeO2 with crystalline walls using PMMA colloidal crystal templates. Colloid and Polymer Science, 2006, 285, 1-9.	2.1	48