
Monika Ewa SzelÄg.

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6463757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solar forcing for CMIP6 (v3.2). Geoscientific Model Development, 2017, 10, 2247-2302.	1.3	293
2	Missing driver in the Sun–Earth connection from energetic electron precipitation impacts mesospheric ozone. Nature Communications, 2014, 5, 5197.	5.8	148
3	WACCMâ€D—Whole Atmosphere Community Climate Model with Dâ€region ion chemistry. Journal of Advances in Modeling Earth Systems, 2016, 8, 954-975.	1.3	86
4	Precipitating radiation belt electrons and enhancements of mesospheric hydroxyl during 2004–2009. Journal of Geophysical Research, 2012, 117, .	3.3	54
5	Substormâ€induced energetic electron precipitation: Impact on atmospheric chemistry. Geophysical Research Letters, 2015, 42, 8172-8176.	1.5	51
6	Longitudinal hotspots in the mesospheric OH variations due to energetic electron precipitation. Atmospheric Chemistry and Physics, 2014, 14, 1095-1105.	1.9	40
7	Polar Ozone Response to Energetic Particle Precipitation Over Decadal Time Scales: The Role of Mediumâ€Energy Electrons. Journal of Geophysical Research D: Atmospheres, 2018, 123, 607-622.	1.2	38
8	WACCMâ€Đ—Improved modeling of nitric acid and active chlorine during energetic particle precipitation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,328.	1.2	32
9	Observed effects of solar proton events and sudden stratospheric warmings on odd nitrogen and ozone in the polar middle atmosphere. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6837-6848.	1.2	27
10	Observations and Modeling of Increased Nitric Oxide in the Antarctic Polar Middle Atmosphere Associated With Geomagnetic Stormâ€Driven Energetic Electron Precipitation. Journal of Geophysical Research: Space Physics, 2018, 123, 6009-6025.	0.8	22
11	Comparison of modeled and observed effects of radiation belt electron precipitation on mesospheric hydroxyl and ozone. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,419.	1.2	21
12	Transport versus energetic particle precipitation: Northern polar stratospheric NO x and ozone in January-March 2012. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6085-6100.	1.2	21
13	Seasonal stratospheric ozone trends over 2000–2018 derived from several merged data sets. Atmospheric Chemistry and Physics, 2020, 20, 7035-7047.	1.9	19
14	Contribution of proton and electron precipitation to the observed electron concentration in October–November 2003 and September 2005. Annales Geophysicae, 2015, 33, 381-394.	0.6	17
15	The link between springtime total ozone and summer UV radiation in Northern Hemisphere extratropics. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8649-8661.	1.2	16
16	<i>D</i> -region ion–neutral coupled chemistry (Sodankyläon Chemistry,) Tj ET0 WACCM-rSIC. Geoscientific Model Development, 2016, 9, 3123-3136.	Qq0 0 0 rg 1.3	gBT /Overlock 16
17	Measurement report: regional trends of stratospheric ozone evaluated using the MErged GRIdded Dataset of Ozone Profiles (MEGRIDOP). Atmospheric Chemistry and Physics, 2021, 21, 6707-6720.	1.9	14
18	Heppa III Intercomparison Experiment on Electron Precipitation Impacts: 2. Modelâ€Measurement Intercomparison of Nitric Oxide (NO) During a Geomagnetic Storm in April 2010. Journal of	0.8	10

 Intercomparison of Nitric Oxide (NO) During a Geomagnetic Storm in April 2010. Journal of Geophysical Research: Space Physics, 2022, 127, .

Monika Ewa SzelÄ...g

#	Article	IF	CITATIONS
19	Linkages Between the Radiation Belts, Polar Atmosphere and Climate: Electron Precipitation Through Wave Particle Interactions. , 2016, , 354-376.		9
20	Simulated seasonal impact on middle atmospheric ozone from high-energy electron precipitation related to pulsating aurorae. Annales Geophysicae, 2021, 39, 883-897.	0.6	8
21	Is there a direct solar proton impact on lower-stratospheric ozone?. Atmospheric Chemistry and Physics, 2020, 20, 14969-14982.	1.9	6
22	Statistical response of middle atmosphere composition to solar proton events in WACCM-D simulations: the importance of lower ionospheric chemistry. Atmospheric Chemistry and Physics, 2020, 20, 8923-8938.	1.9	6
23	Odd hydrogen response thresholds for indication of solar proton and electron impact in the mesosphere and stratosphere. Annales Geophysicae, 2020, 38, 1299-1312.	0.6	4
24	Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide inÂ2002–2011: SD-WACCM simulations compared to GOMOS observations. Atmospheric Chemistry and Physics, 2018, 18, 5001-5019.	1.9	2
25	Sensitivity of Middle Atmospheric Ozone to Solar Proton Events: A Comparison Between a Climate Model and Satellites. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034549.	1.2	2
26	Synergy of Using Nadir and Limb Instruments for Tropospheric Ozone Monitoring (SUNLIT). Atmospheric Measurement Techniques, 2022, 15, 3193-3212.	1.2	2