
Francesca Fallarino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6463693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systemic administration of sunflower oil exerts neuroprotection in a mouse model of transient focal cerebral ischaemia. Journal of Pharmacy and Pharmacology, 2022, 74, 1776-1783.	1.2	6
2	Anakinra restores cellular proteostasis by coupling mitochondrial redox balance to autophagy. Journal of Clinical Investigation, 2022, 132, .	3.9	7
3	T cell fat catabolism: A novel target for kynurenine?. EBioMedicine, 2022, 75, 103779.	2.7	2
4	Amniotic fluid stem cellâ€derived extracellular vesicles are independent metabolic units capable of modulating inflammasome activation in THPâ€1 cells. FASEB Journal, 2022, 36, e22218.	0.2	11
5	Liver gene therapy with inteinâ€mediated F8 <i>trans</i> â€splicing corrects mouse haemophilia A. EMBO Molecular Medicine, 2022, 14, e15199.	3.3	5
6	Liver-Directed Adeno-Associated Virus–Mediated Gene Therapy for Mucopolysaccharidosis Type VI. , 2022, 1, .		5
7	Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic communication. Immunity, 2022, 55, 1032-1050.e14.	6.6	41
8	The Landscape of AhR Regulators and Coregulators to Fine-Tune AhR Functions. International Journal of Molecular Sciences, 2021, 22, 757.	1.8	29
9	Novel mutations in the <i>WFS1</i> gene are associated with Wolfram syndrome and systemic inflammation. Human Molecular Genetics, 2021, 30, 265-276.	1.4	18
10	Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism. ELife, 2021, 10, .	2.8	58
11	Tryptophan Metabolites at the Crossroad of Immune-Cell Interaction via the Aryl Hydrocarbon Receptor: Implications for Tumor Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 4644.	1.8	25
12	3-hydroxy-L-kynurenamine is an immunomodulatory biogenic amine. Nature Communications, 2021, 12, 4447.	5.8	30
13	Prevalence of vitamin D deficiency and its prognostic impact on patients hospitalized with COVID-19. Nutrition, 2021, 91-92, 111408.	1.1	16
14	Aspergillus fumigatus tryptophan metabolic route differently affects host immunity. Cell Reports, 2021, 34, 108673.	2.9	16
15	Targeting Aryl hydrocarbon receptor for next-generation immunotherapies: Selective modulators (SAhRMs) versus rapidly metabolized ligands (RMAhRLs). European Journal of Medicinal Chemistry, 2020, 185, 111842.	2.6	35
16	HOPS/Tmub1 involvement in the NF-kB-mediated inflammatory response through the modulation of TRAF6. Cell Death and Disease, 2020, 11, 865.	2.7	13
17	Is Acetylsalicylic Acid a Safe and Potentially Useful Choice for Adult Patients with COVID-19 ?. Drugs, 2020, 80, 1383-1396.	4.9	93
18	Editorial: Immunomodulatory Roles of Tryptophan Metabolites in Inflammation and Cancer. Frontiers in Immunology, 2020, 11, 1497.	2.2	17

#	Article	IF	CITATIONS
19	Garcinoic Acid Is a Natural and Selective Agonist of Pregnane X Receptor. Journal of Medicinal Chemistry, 2020, 63, 3701-3712.	2.9	27
20	Garcinoic acid prevents β-amyloid (Aβ) deposition in the mouse brain. Journal of Biological Chemistry, 2020, 295, 11866-11876.	1.6	18
21	Positive allosteric modulation of indoleamine 2,3-dioxygenase 1 restrains neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3848-3857.	3.3	58
22	HOPS/TMUB1 retains p53 in the cytoplasm and sustains p53â€dependent mitochondrial apoptosis. EMBO Reports, 2020, 21, e48073.	2.0	23
23	Tolerance to FVIII: Role of the Immune Metabolic Enzymes Indoleamine 2,3 Dyoxigenase-1 and Heme Oxygenase-1. Frontiers in Immunology, 2020, 11, 620.	2.2	2
24	Pharmacologic Induction of Endotoxin Tolerance in Dendritic Cells by L-Kynurenine. Frontiers in Immunology, 2020, 11, 292.	2.2	26
25	Class IA PI3Ks regulate subcellular and functional dynamics of IDO1. EMBO Reports, 2020, 21, e49756.	2.0	24
26	The cellular prion protein beyond prion diseases. Swiss Medical Weekly, 2020, 150, w20222.	0.8	13
27	Experimental evidences on the role of silica nanoparticles surface morphology on the loading, release and activity of three proteins. Microporous and Mesoporous Materials, 2019, 287, 220-227.	2.2	9
28	Tollâ€like receptors as novel therapeutic targets for herpes simplex virus infection. Reviews in Medical Virology, 2019, 29, e2048.	3.9	18
29	Discovery of potent p38α MAPK inhibitors through a funnel like workflow combining in silico screening and inÂvitro validation. European Journal of Medicinal Chemistry, 2019, 182, 111624.	2.6	17
30	Engagement of Nuclear Coactivator 7 by 3-Hydroxyanthranilic Acid Enhances Activation of Aryl Hydrocarbon Receptor in Immunoregulatory Dendritic Cells. Frontiers in Immunology, 2019, 10, 1973.	2.2	47
31	<scp>IL</scp> â€35Ig–expressing dendritic cells induce tolerance via Arginase 1. Journal of Cellular and Molecular Medicine, 2019, 23, 3757-3761.	1.6	9
32	Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nature Reviews Drug Discovery, 2019, 18, 379-401.	21.5	805
33	Targeting indoleamine-2,3-dioxygenase in cancer: Scientific rationale and clinical evidence. , 2019, 196, 105-116.		88
34	38 th International Winter-Workshop Clinical, Chemical and Biochemical Aspects of Pteridines and Related Topics Innsbruck, February 26 th – March 1 st , 2019. Pteridines, 2019, 30, 74-102.	0.5	1
35	Targeting metabotropic glutamate receptors for the treatment of neuroinflammation. Current Opinion in Pharmacology, 2018, 38, 16-23.	1.7	33
36	Opportunities and challenges in drug discovery targeting metabotropic glutamate receptor 4. Expert Opinion on Drug Discovery, 2018, 13, 411-423.	2.5	6

#	Article	IF	CITATIONS
37	ILâ€35, a hallmark of immuneâ€regulation in cancer progression, chronic infections and inflammatory diseases. International Journal of Cancer, 2018, 143, 2105-2115.	2.3	53
38	Binding Mode and Structure–Activity Relationships of ITE as an Aryl Hydrocarbon Receptor (AhR) Agonist. ChemMedChem, 2018, 13, 270-279.	1.6	20
39	Nrf2 as regulator of innate immunity: A molecular Swiss army knife!. Biotechnology Advances, 2018, 36, 358-370.	6.0	137
40	Autologous Cell Therapy for Vascular Regeneration: The Role of Proangiogenic Cells. Current Medicinal Chemistry, 2018, 25, 4518-4534.	1.2	12
41	Antigen-selective modulation of AAV immunogenicity with tolerogenic rapamycin nanoparticles enables successful vector re-administration. Nature Communications, 2018, 9, 4098.	5.8	184
42	S1P promotes migration, differentiation and immune regulatory activity in amniotic-fluid–derived stem cells. European Journal of Pharmacology, 2018, 833, 173-182.	1.7	14
43	Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1in juvenile diabetes. JCI Insight, 2018, 3, .	2.3	51
44	Prospective Study of the Immunological Mechanisms of Immune Tolerance Induction in Severe Haemophilia a Patients with Inhibitors: Preliminary Analysis of a Multi-Center Longitudinal Study. Blood, 2018, 132, 3781-3781.	0.6	0
45	PCSK9 at the crossroad of cholesterol metabolism and immune function during infections. Journal of Cellular Physiology, 2017, 232, 2330-2338.	2.0	61
46	A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells. Immunity, 2017, 46, 233-244.	6.6	241
47	Thymosin α1 represents a potential potent single-molecule-based therapy for cystic fibrosis. Nature Medicine, 2017, 23, 590-600.	15.2	91
48	Interaction of 7-Alkoxycoumarins with the Aryl Hydrocarbon Receptor. Journal of Natural Products, 2017, 80, 1939-1943.	1.5	10
49	Signal Transducer and Activator of Transcription 1 Plays a Pivotal Role in RET/PTC3 Oncogene-induced Expression of Indoleamine 2,3-Dioxygenase 1. Journal of Biological Chemistry, 2017, 292, 1785-1797.	1.6	17
50	Distinct roles of immunoreceptor tyrosineâ€based motifs in immunosuppressive indoleamine 2,3â€dioxygenase 1. Journal of Cellular and Molecular Medicine, 2017, 21, 165-176.	1.6	51
51	The Proteasome Inhibitor Bortezomib Controls Indoleamine 2,3-Dioxygenase 1 Breakdown and Restores Immune Regulation in Autoimmune Diabetes. Frontiers in Immunology, 2017, 8, 428.	2.2	28
52	CpG Type A Induction of an Early Protective Environment in Experimental Multiple Sclerosis. Mediators of Inflammation, 2017, 2017, 1-12.	1.4	7
53	Aryl Hydrocarbon Receptor: An Environmental Sensor in Control of Allergy Outcomes. Birkhauser Advances in Infectious Diseases, 2017, , 167-189.	0.3	1
54	IDO1 Deficiency Does Not Affect Disease in Mouse Models of Systemic Juvenile Idiopathic Arthritis and Secondary Hemophagocytic Lymphohistiocytosis. PLoS ONE, 2016, 11, e0150075.	1.1	19

#	Article	IF	CITATIONS
55	Aryl Hydrocarbon Receptor–Dependent Pathways in Immune Regulation. American Journal of Transplantation, 2016, 16, 2270-2276.	2.6	20
56	Effects of a nutraceutical combination on lipids, inflammation and endothelial integrity in patients with subclinical inflammation: a randomized clinical trial. Scientific Reports, 2016, 6, 23587.	1.6	29
57	Xenograft of microencapsulated Sertoli cells restores glucose homeostasis in db/db mice with spontaneous diabetes mellitus. Xenotransplantation, 2016, 23, 429-439.	1.6	16
58	Differential inflammatory phenotypes upon genetic or pharmacologic inactivation of indoleamine dioxygenase in experimental steatohepatitis. Digestive and Liver Disease, 2016, 48, e44.	0.4	0
59	Allosteric modulation of metabotropic glutamate receptor 4 activates IDO1-dependent, immunoregulatory signaling in dendritic cells. Neuropharmacology, 2016, 102, 59-71.	2.0	29
60	Azithromycin protects mice against ischemic stroke injury by promoting macrophage transition towards M2 phenotype. Experimental Neurology, 2016, 275, 116-125.	2.0	81
61	Intraperitoneal injection of microencapsulated Sertoli cells restores muscle morphology and performance in dystrophic mice. Biomaterials, 2016, 75, 313-326.	5.7	25
62	Delineating the Role of Toll-Like Receptors in the Neuro-inflammation Model EAE. Methods in Molecular Biology, 2016, 1390, 383-411.	0.4	12
63	Installing FVIII-Specific Tolerance in Hemophilia Via Engagement of the Aryl Hydrocarbon Receptor By Tryptophan Derivatives. Blood, 2016, 128, 2563-2563.	0.6	0
64	Stem cells from human amniotic fluid exert immunoregulatory function <i>via</i> secreted indoleamine 2,3â€dioxygenase1. Journal of Cellular and Molecular Medicine, 2015, 19, 1593-1605.	1.6	45
65	Effects of intraperitoneal injection of microencapsulated Sertoli cells on chronic and presymptomatic dystrophic mice. Data in Brief, 2015, 5, 1015-1021.	0.5	8
66	Longâ€ŧerm stability, functional competence, and safety of microencapsulated specific pathogenâ€free neonatal porcine Sertoli cells: a potential product for cell transplant therapy. Xenotransplantation, 2015, 22, 273-283.	1.6	26
67	Accumulation of an Endogenous Tryptophan-Derived Metabolite in Colorectal and Breast Cancers. PLoS ONE, 2015, 10, e0122046.	1.1	76
68	Cytokines in systemic juvenile idiopathic arthritis and haemophagocytic lymphohistiocytosis: tipping the balance between interleukin-18 and interferon-γ. Rheumatology, 2015, 54, 1507-1517.	0.9	125
69	In vitro cadmium effects on ECM gene expression in human bronchial epithelial cells. Cytokine, 2015, 72, 9-16.	1.4	21
70	The Pyrazolobenzothiazine Core as a New Chemotype of p38 Alpha Mitogenâ€Activated Protein Kinase Inhibitors. Chemical Biology and Drug Design, 2015, 86, 531-545.	1.5	14
71	A NOVEL ROLE FOR THE KYNURENINE PATHWAY IN EXPERIMENTAL STEATOHEPATITIS. Digestive and Liver Disease, 2015, 47, e21.	0.4	1
72	Comparative proteomic analysis of two distinct stem-cell populations from human amniotic fluid. Molecular BioSystems, 2015, 11, 1622-1632.	2.9	7

#	Article	IF	CITATIONS
73	Involvement of the IDO-1 pathway in experimental NASH. Digestive and Liver Disease, 2015, 47, e234-e235.	0.4	0
74	LPS-conditioned dendritic cells confer endotoxin tolerance contingent on tryptophan catabolism. Immunobiology, 2015, 220, 315-321.	0.8	30
75	IDO1 suppresses inhibitor development in hemophilia A treated with factor VIII. Journal of Clinical Investigation, 2015, 125, 3766-3781.	3.9	39
76	NEDD4 controls the expression of GUCD1, a protein upregulated in proliferating liver cells. Cell Cycle, 2014, 13, 1902-1911.	1.3	27
77	Distinct and complementary roles for <i>Aspergillus fumigatus</i> â€specific Tr1 and Foxp3 ⁺ regulatory T cells in humans and mice. Immunology and Cell Biology, 2014, 92, 659-670.	1.0	22
78	Forced IDO 1 expression in dendritic cells restores immunoregulatory signalling in autoimmune diabetes. Journal of Cellular and Molecular Medicine, 2014, 18, 2082-2091.	1.6	47
79	Ligand Binding and Functional Selectivity of <scp>l</scp> -Tryptophan Metabolites at the Mouse Aryl Hydrocarbon Receptor (mAhR). Journal of Chemical Information and Modeling, 2014, 54, 3373-3383.	2.5	42
80	AhR: Far more than an environmental sensor. Cell Cycle, 2014, 13, 2645-2646.	1.3	14
81	Tryptophan Feeding of the IDO1-AhR Axis in Hostââ,¬â€œMicrobial Symbiosis. Frontiers in Immunology, 2014, 5, 640.	2.2	68
82	AhR-Mediated, Non-Genomic Modulation of IDO1 Function. Frontiers in Immunology, 2014, 5, 497.	2.2	37
83	Cinnabarinic acid, an endogenous agonist of type-4 metabotropic glutamate receptor, suppresses experimental autoimmune encephalomyelitis in mice. Neuropharmacology, 2014, 81, 237-243.	2.0	48
84	Indoleamine 2,3-Dioxygenase 1 (IDO1) Is Up-Regulated in Thyroid Carcinoma and Drives the Development of an Immunosuppressant Tumor Microenvironment. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E832-E840.	1.8	73
85	Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature, 2014, 511, 184-190.	13.7	574
86	On-treatment C-reactive protein and HDL cholesterol levels in patients at intermediate cardiovascular risk: Impact on carotid intima-media thickness. Life Sciences, 2013, 93, 338-343.	2.0	7
87	High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9–TRIF pathway. Nature Communications, 2013, 4, 1852.	5.8	102
88	Tryptophan Catabolites from Microbiota Engage Aryl Hydrocarbon Receptor and Balance Mucosal Reactivity via Interleukin-22. Immunity, 2013, 39, 372-385.	6.6	1,663
89	Th17/Treg Imbalance in Murine Cystic Fibrosis Is Linked to Indoleamine 2,3-Dioxygenase Deficiency but Corrected by Kynurenines. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 609-620.	2.5	86
90	Cytotoxic T lymphocyte antigen 4-immunoglobulin G is a potent adjuvant for experimental allergen immunotherapy. Clinical and Experimental Immunology, 2013, 172, 113-120.	1.1	13

#	Article	IF	CITATIONS
91	Topical Application of Soluble CD83 Induces IDO-Mediated Immune Modulation, Increases Foxp3+ T Cells, and Prolongs Allogeneic Corneal Graft Survival. Journal of Immunology, 2013, 191, 1965-1975.	0.4	60
92	A GpC-Rich Oligonucleotide Acts on Plasmacytoid Dendritic Cells To Promote Immune Suppression. Journal of Immunology, 2012, 189, 2283-2289.	0.4	22
93	TLR3 essentially promotes protective class l–restricted memory CD8+ T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood, 2012, 119, 967-977.	0.6	117
94	Targeting metabotropic glutamate receptors in neuroimmune communication. Neuropharmacology, 2012, 63, 501-506.	2.0	18
95	Indoleamine 2,3â€dioxygenase: From catalyst to signaling function. European Journal of Immunology, 2012, 42, 1932-1937.	1.6	160
96	Jack of all trades: thymosin α1 and its pleiotropy. Annals of the New York Academy of Sciences, 2012, 1269, 1-6.	1.8	40
97	Prolongation of skin allograft survival in rats by the transplantation of microencapsulated xenogeneic neonatal porcine Sertoli cells. Biomaterials, 2012, 33, 5333-5340.	5.7	26
98	Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nature Immunology, 2011, 12, 870-878.	7.0	577
99	Using an Ancient Tool for Igniting and Propagating Immune Tolerance: IDO as an Inducer and Amplifier of Regulatory T Cell Functions. Current Medicinal Chemistry, 2011, 18, 2215-2221.	1.2	50
100	Indoleamine 2,3-Dioxygenase and Peripheral Tolerance to Exogenous Factor VIII: A Multi-Centre Pilot Study. Blood, 2011, 118, 26-26.	0.6	1
101	Xenograft of Microencapsulated Sertoli Cells Reverses T1DM in NOD Mice by Inducing Neogenesis of Beta-Cells. Transplantation, 2010, 90, 1352-1357.	0.5	16
102	Proteasomal Degradation of Indoleamine 2,3-Dioxygenase in CD8 ⁺ Dendritic Cells is Mediated by Suppressor of Cytokine Signaling 3 (SOCS3). International Journal of Tryptophan Research, 2010, 3, IJTR.S3971.	1.0	23
103	Bioactive Long-Term Release from Biodegradable Microspheres Preserves Implanted ALG-PLO-ALG Microcapsules from In Vivo Response to Purified Alginate. Pharmaceutical Research, 2010, 27, 285-295.	1.7	13
104	Thymosin $\hat{l}\pm 1$: the regulator of regulators?. Annals of the New York Academy of Sciences, 2010, 1194, 1-5.	1.8	37
105	Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation. Nature Medicine, 2010, 16, 897-902.	15.2	138
106	Correction: IDO Mediates Tlr9-Driven Protection From Experimental Autoimmune Diabetes. Journal of Immunology, 2010, 184, 7316-7316.	0.4	0
107	IDO Upregulates Regulatory T Cells via Tryptophan Catabolite and Suppresses Encephalitogenic T Cell Responses in Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2010, 185, 5953-5961.	0.4	291
108	Intranasally delivered siRNA targeting PI3K/Akt/mTOR inflammatory pathways protects from aspergillosis. Mucosal Immunology, 2010, 3, 193-205.	2.7	64

#	Article	IF	CITATIONS
109	IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunology, 2010, 3, 361-373.	2.7	247
110	Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut, 2010, 59, 595-604.	6.1	313
111	Indoleamine 2,3-dioxygenase (IDO) in inflammation and allergy to <i>Aspergillus</i> . Medical Mycology, 2009, 47, S154-S161.	0.3	21
112	IDO Mediates TLR9-Driven Protection from Experimental Autoimmune Diabetes. Journal of Immunology, 2009, 183, 6303-6312.	0.4	101
113	Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunology, 2009, 2, 362-374.	2.7	122
114	Therapy of experimental type 1 diabetes by isolated Sertoli cell xenografts alone. Journal of Experimental Medicine, 2009, 206, 2511-2526.	4.2	84
115	Indoleamine 2,3-dioxygenase in infection: the paradox of an evasive strategy that benefits the host. Microbes and Infection, 2009, 11, 133-141.	1.0	104
116	Innovative extraction procedure for obtaining high pure lycopene from tomato. European Food Research and Technology, 2008, 226, 327-335.	1.6	38
117	Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature, 2008, 451, 211-215.	13.7	492
118	Generation of T cell regulatory activity by plasmacytoid dendritic cells and tryptophan catabolism. Blood Cells, Molecules, and Diseases, 2008, 40, 101-105.	0.6	57
119	IL-17 and Therapeutic Kynurenines in Pathogenic Inflammation to Fungi. Journal of Immunology, 2008, 180, 5157-5162.	0.4	105
120	SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20828-20833.	3.3	187
121	Melanoma presenting as circulating tumor cells associated with failed angiogenesis. Melanoma Research, 2008, 18, 289-294.	0.6	5
122	CTLA-4-immunoglobulin and indoleamine 2,3-dioxygenase in dominant tolerance. , 2008, , 87-106.		1
123	Functional yet Balanced Reactivity to <i>Candida albicans</i> Requires TRIF, MyD88, and IDO-Dependent Inhibition of <i>Rorc</i> . Journal of Immunology, 2007, 179, 5999-6008.	0.4	159
124	Tryptophan Catabolism in IDO+ Plasmacytoid Dendritic Cells. Current Drug Metabolism, 2007, 8, 209-216.	0.7	59
125	Immunosuppression Via Tryptophan Catabolism: The Role of Kynurenine Pathway Enzymes. Transplantation, 2007, 84, S17-S20.	0.5	82
126	Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nature Medicine, 2007, 13, 579-586.	15.2	298

#	Article	IF	CITATIONS
127	Receptors and Pathways in Innate Antifungal Immunity. Advances in Experimental Medicine and Biology, 2007, 590, 209-221.	0.8	20
128	Tryptophan catabolism generates autoimmune-preventive regulatory T cells. Transplant Immunology, 2006, 17, 58-60.	0.6	97
129	Thymosin $\hat{I}\pm 1$ activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood, 2006, 108, 2265-2274.	0.6	172
130	Increased GILZ expression in transgenic mice up-regulates Th-2 lymphokines. Blood, 2006, 107, 1039-1047.	0.6	91
131	Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood, 2006, 107, 2846-2854.	0.6	183
132	Toll-like receptor 9-mediated induction of the immunosuppressive pathway of tryptophan catabolism. European Journal of Immunology, 2006, 36, 8-11.	1.6	53
133	Mechanisms of CTLA-4-Ig in Tolerance Induction. Current Pharmaceutical Design, 2006, 12, 149-160.	0.9	63
134	The Combined Effects of Tryptophan Starvation and Tryptophan Catabolites Down-Regulate T Cell Receptor ζ-Chain and Induce a Regulatory Phenotype in Naive T Cells. Journal of Immunology, 2006, 176, 6752-6761.	0.4	943
135	Kynurenine Pathway Enzymes in Dendritic Cells Initiate Tolerogenesis in the Absence of Functional IDO. Journal of Immunology, 2006, 177, 130-137.	0.4	164
136	Immunity and Tolerance to <i>Aspergillus</i> Involve Functionally Distinct Regulatory T Cells and Tryptophan Catabolism. Journal of Immunology, 2006, 176, 1712-1723.	0.4	187
137	Enhanced tryptophan catabolism in the absence of the molecular adapter DAP12. European Journal of Immunology, 2005, 35, 3111-3118.	1.6	38
138	CD40 ligation prevents onset of tolerogenic properties in human dendritic cells treated with CTLA-4-Ig. Microbes and Infection, 2005, 7, 1040-1048.	1.0	24
139	Ligand and cytokine dependence of the immunosuppressive pathway of tryptophan catabolism in plasmacytoid dendritic cells. International Immunology, 2005, 17, 1429-1438.	1.8	74
140	Immune-Reconstituted Influenza Virosome Containing <i>CD40L</i> Gene Enhances the Immunological and Protective Activity of a Carcinoembryonic Antigen Anticancer Vaccine. Journal of Immunology, 2005, 174, 7210-7216.	0.4	19
141	A Crucial Role for Tryptophan Catabolism at the Host/ <i>Candida albicans</i> Interface. Journal of Immunology, 2005, 174, 2910-2918.	0.4	129
142	Cutting Edge: Silencing Suppressor of Cytokine Signaling 3 Expression in Dendritic Cells Turns CD28-Ig from Immune Adjuvant to Suppressant. Journal of Immunology, 2005, 174, 6582-6586.	0.4	88
143	CTLA-4–Ig Activates Forkhead Transcription Factors and Protects Dendritic Cells from Oxidative Stress in Nonobese Diabetic Mice. Journal of Experimental Medicine, 2004, 200, 1051-1062.	4.2	125
144	TLRs Govern Neutrophil Activity in Aspergillosis. Journal of Immunology, 2004, 173, 7406-7415.	0.4	222

#	Article	IF	CITATIONS
145	Murine Plasmacytoid Dendritic Cells Initiate the Immunosuppressive Pathway of Tryptophan Catabolism in Response to CD200 Receptor Engagement. Journal of Immunology, 2004, 173, 3748-3754.	0.4	203
146	CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nature Immunology, 2004, 5, 1134-1142.	7.0	262
147	TOLERANCE, DENDRITIC CELLS AND TRYPTOPHAN. Shock, 2004, 21, 58.	1.0	1
148	Modulation of tryptophan catabolism by regulatory T cells. Nature Immunology, 2003, 4, 1206-1212.	7.0	1,172
149	BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nature Immunology, 2003, 4, 670-679.	7.0	768
150	Tolerance, DCs and tryptophan: much ado about IDO. Trends in Immunology, 2003, 24, 242-248.	2.9	702
151	Response to von Bubnoff et al.: Still new perspectives on IDO function?. Trends in Immunology, 2003, 24, 297.	2.9	Ο
152	Functional Plasticity of Dendritic Cell Subsets as Mediated by CD40 Versus B7 Activation. Journal of Immunology, 2003, 171, 2581-2587.	0.4	100
153	A Defect in Tryptophan Catabolism Impairs Tolerance in Nonobese Diabetic Mice. Journal of Experimental Medicine, 2003, 198, 153-160.	4.2	193
154	T Cell Apoptosis by Kynurenines. Advances in Experimental Medicine and Biology, 2003, 527, 183-190.	0.8	175
155	Tryptophan Catabolism in Nonobese Diabetic Mice. Advances in Experimental Medicine and Biology, 2003, 527, 47-54.	0.8	20
156	CD40 Ligand and CTLA-4 Are Reciprocally Regulated in the Th1 Cell Proliferative Response Sustained by CD8+ Dendritic Cells. Journal of Immunology, 2002, 169, 1182-1188.	0.4	21
157	Functional expression of indoleamine 2,3-dioxygenase by murine CD8α+ dendritic cells. International Immunology, 2002, 14, 65-68.	1.8	233
158	IL-23 and IL-12 Have Overlapping, but Distinct, Effects on Murine Dendritic Cells. Journal of Immunology, 2002, 168, 5448-5454.	0.4	214
159	T cell apoptosis by tryptophan catabolism. Cell Death and Differentiation, 2002, 9, 1069-1077.	5.0	860
160	CTLA-4–lg regulates tryptophan catabolism in vivo. Nature Immunology, 2002, 3, 1097-1101.	7.0	1,077
161	Transplantation and the CD28/CTLA4/B7 pathway. Transplantation Proceedings, 2001, 33, 209-211.	0.3	17
162	IL-6 Inhibits the Tolerogenic Function of CD8α+ Dendritic Cells Expressing Indoleamine 2,3-Dioxygenase. Journal of Immunology, 2001, 167, 708-714.	0.4	168

#	Article	IF	CITATIONS
163	Epitope spreading upon P815 tumor rejection triggered by vaccination with the single class I MHC-restricted peptide P1A. International Immunology, 2001, 13, 625-632.	1.8	46
164	CD40 Ligation Ablates the Tolerogenic Potential of Lymphoid Dendritic Cells. Journal of Immunology, 2001, 166, 277-283.	0.4	129
165	Positive Regulatory Role of IL-12 in Macrophages and Modulation by IFN-γ. Journal of Immunology, 2001, 167, 221-227.	0.4	105
166	Absence of CTLA-4 Lowers the Activation Threshold of Primed CD8+ TCR-Transgenic T Cells: Lack of Correlation with Src Homology Domain 2-Containing Protein Tyrosine Phosphatase. Journal of Immunology, 2001, 166, 3900-3907.	0.4	50
167	Spontaneous Rejection of Poorly Immunogenic P1.HTR Tumors by Stat6-Deficient Mice. Journal of Immunology, 2000, 165, 6024-6028.	0.4	82
168	IFN-Î ³ Inhibits Presentation of a Tumor/Self Peptide by CD8αâ ^{~,} Dendritic Cells Via Potentiation of the CD8α+ Subset. Journal of Immunology, 2000, 165, 1357-1363.	0.4	97
169	Blockade of T Cell Activation Using a Surface-Linked Single-Chain Antibody to CTLA-4 (CD152). Journal of Immunology, 2000, 164, 4433-4442.	0.4	69
170	Th1 and Th2 Cell Clones to a Poorly Immunogenic Tumor Antigen Initiate CD8+ T Cell-Dependent Tumor Eradication In Vivo. Journal of Immunology, 2000, 165, 5495-5501.	0.4	77
171	Improved efficacy of dendritic cell vaccines and successful immunization with tumor antigen peptide-pulsed peripheral blood mononuclear cells by coadministration of recombinant murine interleukin-12. , 1999, 80, 324-333.		57
172	B7-1 Engagement of Cytotoxic T Lymphocyte Antigen 4 Inhibits T Cell Activation in the Absence of CD28. Journal of Experimental Medicine, 1998, 188, 205-210.	4.2	160
173	Antigen-specific regression of established tumors induced by active immunization with irradiated IL-12- but not B7-1-transfected tumor cells. International Immunology, 1997, 9, 1259-1269.	1.8	31
174	CD8+ cell activation to a major mastocytoma rejection antigen, P815AB: requirement for tumâ^' or helper peptides in priming for skin test reactivity to a P815AB-related peptide. European Journal of Immunology, 1995, 25, 2797-2802.	1.6	30