
David Eglin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6463444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chemical Reviews, 2020, 120, 11028-11055.	23.0	552
2	Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 2007, 18, 1263-1277.	1.7	447
3	Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomaterialia, 2018, 65, 1-20.	4.1	427
4	Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials, 2019, 197, 207-219.	5.7	348
5	Tissue engineering for articular cartilage repair $\hat{a} \in$ "the state of the art. , 2013, 25, 248-267.		305
6	A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomaterialia, 2015, 11, 162-172.	4.1	242
7	Challenges and strategies in the repair of ruptured annulus fibrosus. , 2013, 25, 1-21.		181
8	The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials, 2008, 29, 4217-4226.	5.7	170
9	Antimicrobial delivery systems for local infection prophylaxis in orthopedic- and trauma surgery. Biomaterials, 2015, 52, 113-125.	5.7	160
10	Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomaterialia, 2017, 54, 386-398.	4.1	151
11	Physical Stimulation of Chondrogenic Cells In Vitro: A Review. Clinical Orthopaedics and Related Research, 2011, 469, 2764-2772.	0.7	147
12	Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomaterialia, 2015, 11, 412-434.	4.1	134
13	Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomaterialia, 2018, 79, 265-275.	4.1	134
14	Osseointegration of machined, injection moulded and oxygen plasma modified PEEK implants in a sheep model. Biomaterials, 2014, 35, 3717-3728.	5.7	130
15	Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Acta Biomaterialia, 2016, 46, 112-128.	4.1	128
16	A Stimuliâ€Responsive Nanocomposite for 3D Anisotropic Cellâ€Guidance and Magnetic Soft Robotics. Advanced Functional Materials, 2019, 29, 1804647.	7.8	126
17	In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering. Acta Biomaterialia, 2010, 6, 2020-2027.	4.1	121
18	3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking. Biofabrication, 2018, 10, 044104.	3.7	117

#	Article	IF	CITATIONS
19	Surface curvature in triply-periodic minimal surface architectures as a distinct design parameter in preparing advanced tissue engineering scaffolds. Biofabrication, 2017, 9, 025001.	3.7	116
20	Cells and biomaterials in cartilage tissue engineering. Regenerative Medicine, 2009, 4, 81-98.	0.8	115
21	In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering. Acta Biomaterialia, 2009, 5, 1991-2001.	4.1	114
22	A systematic analysis of DMTMM vs EDC/NHS for ligation of amines to Hyaluronan in water. Carbohydrate Polymers, 2014, 108, 239-246.	5.1	114
23	Tailoring Thermoreversible Hyaluronan Hydrogels by "Click―Chemistry and RAFT Polymerization for Cell and Drug Therapy. Biomacromolecules, 2010, 11, 1261-1272.	2.6	107
24	Hyaluronic acid as a bioink for extrusion-based 3D printing. Biofabrication, 2020, 12, 032001.	3.7	107
25	Degradable polymeric materials for osteosynthesis: Tutorial. , 2008, 16, 80-91.		107
26	The silicomolybdic acid spectrophotometric method and its application to silicate/biopolymer interaction studies. Spectroscopy, 2004, 18, 567-576.	0.8	105
27	Injectable thermoreversible hyaluronan-based hydrogels for nucleus pulposus cell encapsulation. European Spine Journal, 2012, 21, 839-849.	1.0	98
28	Bone matrix like assemblies of collagen: From liquid crystals to gels and biomimetic materials. Micron, 2005, 36, 602-608.	1.1	95
29	Thermoreversible hyaluronan-based hydrogel supports inÂvitro and exÂvivo disc-like differentiation of human mesenchymal stem cells. Spine Journal, 2013, 13, 1627-1639.	0.6	93
30	Three-dimensional spheroids of adipose-derived mesenchymal stem cells are potent initiators of blood vessel formation in porous polyurethane scaffolds. Acta Biomaterialia, 2013, 9, 6876-6884.	4.1	91
31	A combined biomaterial and cellular approach for annulus fibrosus rupture repair. Biomaterials, 2015, 42, 11-19.	5.7	91
32	Visible Light-Induced 3D Bioprinting Technologies and Corresponding Bioink Materials for Tissue Engineering: A Review. Engineering, 2021, 7, 966-978.	3.2	91
33	Type I collagen, a versatile liquid crystal biological template for silica structuration from nano- to microscopic scales. Soft Matter, 2005, 1, 129.	1.2	90
34	Degradation of synthetic polymeric scaffolds for bone and cartilage tissue repairs. Soft Matter, 2009, 5, 938.	1.2	78
35	The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs. Biomaterials, 2014, 35, 8144-8153.	5.7	78
36	Hydrogels in calcium phosphate moldable and injectable bone substitutes: Sticky excipients or advanced 3-D carriers?. Acta Biomaterialia, 2013, 9, 5421-5430.	4.1	77

#	Article	IF	CITATIONS
37	Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering. Acta Biomaterialia, 2009, 5, 3316-3327.	4.1	75
38	Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics. Journal of Controlled Release, 2018, 269, 88-99.	4.8	74
39	Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Materials Science and Engineering C, 2021, 120, 111701.	3.8	72
40	Single step synthesis and characterization of thermoresponsive hyaluronan hydrogels. Carbohydrate Polymers, 2012, 90, 1378-1385.	5.1	67
41	Bio-Fabrication: Convergence of 3D Bioprinting and Nano-Biomaterials in Tissue Engineering and Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 326.	2.0	67
42	Vascularisation of porous scaffolds is improved by incorporation of adipose tissue-derived microvascular fragments. , 2012, 24, 266-277.		67
43	Evaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formation. Acta Biomaterialia, 2020, 101, 293-303.	4.1	66
44	Precise tailoring of tyramine-based hyaluronan hydrogel properties using DMTMM conjugation. Carbohydrate Polymers, 2015, 115, 325-333.	5.1	65
45	Growthâ€Factor Free Multicomponent Nanocomposite Hydrogels That Stimulate Bone Formation. Advanced Functional Materials, 2020, 30, 1906205.	7.8	65
46	Asymmetrical seeding of MSCs into fibrin-poly(ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2912-2921.	1.3	63
47	Infections associated with mesh repairs of abdominal wall hernias: Are antimicrobial biomaterials the longed-for solution?. Biomaterials, 2018, 167, 15-31.	5.7	61
48	Injectable gentamicin-loaded thermo-responsive hyaluronic acid derivative prevents infection in a rabbit model. Acta Biomaterialia, 2016, 43, 185-194.	4.1	60
49	Three-Dimensional Printing of a Tyramine Hyaluronan Derivative with Double Gelation Mechanism for Independent Tuning of Shear Thinning and Postprinting Curing. ACS Biomaterials Science and Engineering, 2018, 4, 3088-3098.	2.6	60
50	Design of tunable gelatin-dopamine based bioadhesives. International Journal of Biological Macromolecules, 2020, 164, 1384-1391.	3.6	57
51	Comparative study of the influence of several silica precursors on collagen self-assembly and of collagen on â€~Si' speciation and condensation. Journal of Materials Chemistry, 2006, 16, 4220-4230.	6.7	55
52	Mechanical restoration and failure analyses of a hydrogel and scaffold composite strategy for annulus fibrosus repair. Acta Biomaterialia, 2016, 30, 116-125.	4.1	55
53	Multicomponent hydrogels for the formation of vascularized bone-like constructs in vitro. Acta Biomaterialia, 2020, 109, 82-94.	4.1	55
54	Tissue mimetic hyaluronan bioink containing collagen fibers with controlled orientation modulating cell migration and alignment. Materials Today Bio, 2020, 7, 100058.	2.6	54

#	Article	IF	CITATIONS
55	Self-Healing Dynamic Hydrogel as Injectable Shock-Absorbing Artificial Nucleus Pulposus. Biomacromolecules, 2017, 18, 2360-2370.	2.6	53
56	In vitro apatite forming ability of type I collagen hydrogels containing bioactive glass and silica sol-gel particles. Journal of Materials Science: Materials in Medicine, 2006, 17, 161-167.	1.7	50
57	Optimization of electrospray fabrication of stem cell–embedded alginate–gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering. Journal of Orthopaedic Translation, 2019, 18, 128-141.	1.9	49
58	In vitro osteogenic differentiation of adipose-derived mesenchymal stem cell spheroids impairs their in vivo vascularization capacity inside implanted porous polyurethane scaffolds. Acta Biomaterialia, 2014, 10, 4226-4235.	4.1	48
59	Cross-Linking Chemistry of Tyramine-Modified Hyaluronan Hydrogels Alters Mesenchymal Stem Cell Early Attachment and Behavior. Biomacromolecules, 2017, 18, 855-864.	2.6	48
60	Lessons to be learned and future directions for intervertebral disc biomaterials. Acta Biomaterialia, 2018, 78, 13-22.	4.1	48
61	Bioprinting Tissue Analogues with Decellularized Extracellular Matrix Bioink for Regeneration and Tissue Models of Cartilage and Intervertebral Discs. Advanced Functional Materials, 2020, 30, 1909044.	7.8	48
62	Microfabrication of Photo-Cross-Linked Hyaluronan Hydrogels by Single- and Two-Photon Tyramine Oxidation. Biomacromolecules, 2015, 16, 2624-2630.	2.6	44
63	Chondrogenic potential of IL-10 in mechanically injured cartilage and cellularized collagen ACI grafts. Osteoarthritis and Cartilage, 2018, 26, 264-275.	0.6	43
64	Local application of a gentamicin-loaded thermo-responsive hydrogel allows for fracture healing upon clearance of a high Staphylococcus aureus load in a rabbit model. , 0, 35, 151-164.		41
65	Sound-induced morphogenesis of multicellular systems for rapid orchestration of vascular networks. Biofabrication, 2021, 13, 015004.	3.7	40
66	Orbital floor repair using patient specific osteoinductive implant made by stereolithography. Biomaterials, 2020, 233, 119721.	5.7	39
67	Mussel-Inspired Peptide Coatings on Titanium Implant to Improve Osseointegration in Osteoporotic Condition. ACS Biomaterials Science and Engineering, 2018, 4, 2505-2515.	2.6	38
68	A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications. International Journal of Molecular Sciences, 2020, 21, 912.	1.8	37
69	Fabrication of patient specific composite orbital floor implants by stereolithography. Polymers for Advanced Technologies, 2015, 26, 1433-1438.	1.6	36
70	Articular Joint-Simulating Mechanical Load Activates Endogenous TGF-β in a Highly Cellularized Bioadhesive Hydrogel for Cartilage Repair. American Journal of Sports Medicine, 2020, 48, 210-221.	1.9	36
71	Farsenolâ€modified biodegradable polyurethanes for cartilage tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 92A, 393-408.	2.1	35
72	Short-Term Cultivation of <i>In Situ</i> Prevascularized Tissue Constructs Accelerates Inosculation of Their Preformed Microvascular Networks After Implantation into the Host Tissue. Tissue Engineering - Part A, 2011, 17, 841-853.	1.6	33

#	Article	IF	CITATIONS
73	Poly(trimethylene carbonate) and nanoâ€hydroxyapatite porous scaffolds manufactured by stereolithography. Polymers for Advanced Technologies, 2017, 28, 1219-1225.	1.6	32
74	Collagen density gradient on threeâ€dimensional printed poly(εâ€caprolactone) scaffolds for interface tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 321-329.	1.3	32
75	Extracellular matrix-mimetic composite hydrogels of cross-linked hyaluronan and fibrillar collagen with tunable properties and ultrastructure. Carbohydrate Polymers, 2020, 236, 116042.	5.1	31
76	Hyaluronic acid-based interpenetrating network hydrogel as a cell carrier for nucleus pulposus repair. Carbohydrate Polymers, 2022, 277, 118828.	5.1	31
77	Biodegradable Electrospun Scaffolds for Annulus Fibrosus Tissue Engineering: Effect of Scaffold Structure and Composition on Annulus Fibrosus Cells <i>In Vitro</i> . Tissue Engineering - Part A, 2014, 20, 140123085256009.	1.6	30
78	Evaluation of an injectable thermoresponsive hyaluronan hydrogel in a rabbit osteochondral defect model. Journal of Biomedical Materials Research - Part A, 2016, 104, 1469-1478.	2.1	29
79	A papain-induced disc degeneration model for the assessment of thermo-reversible hydrogel-cells therapeutic approach. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, E167-E176.	1.3	28
80	Effects of locally applied adipose tissue-derived microvascular fragments by thermoresponsive hydrogel on bone healing. Acta Biomaterialia, 2018, 77, 201-211.	4.1	28
81	A Hyaluronic Acid Hydrogel Loaded with Gentamicin and Vancomycin Successfully Eradicates Chronic Methicillin-Resistant Staphylococcus aureus Orthopedic Infection in a Sheep Model. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	27
82	Injectable Hyaluronan Hydrogels with Peptide-Binding Dendrimers Modulate the Controlled Release of BMP-2 and TGF-β1. Macromolecular Bioscience, 2015, 15, 1035-1044.	2.1	25
83	An anisotropic nanocomposite hydrogel guides aligned orientation and enhances tenogenesis of human tendon stem/progenitor cells. Biomaterials Science, 2021, 9, 1237-1245.	2.6	25
84	Functional cell phenotype induction with TGF-β1 and collagen-polyurethane scaffold for annulus fibrosus rupture repair. , 2020, 39, 1-17.		24
85	Multivalent dendrimers presenting spatially controlled clusters of binding epitopes in thermoresponsive hyaluronan hydrogels. Acta Biomaterialia, 2014, 10, 4340-4350.	4.1	22
86	Fabrication of cell-compatible hyaluronan hydrogels with a wide range of biophysical properties through high tyramine functionalization. Journal of Materials Chemistry B, 2017, 5, 2355-2363.	2.9	20
87	Human umbilical cordâ€derived scaffolds for cartilage tissue engineering. Journal of Biomedical Materials Research - Part A, 2019, 107, 1793-1802.	2.1	20
88	Innovating in the medical device industry – challenges & opportunities ESB 2015 translational research symposium. Journal of Materials Science: Materials in Medicine, 2016, 27, 144.	1.7	19
89	Development of bone seeker–functionalised microspheres as a targeted local antibiotic delivery system for bone infections. Journal of Orthopaedic Translation, 2020, 21, 136-145.	1.9	19
90	Local application of a gentamicin-loaded thermo-responsive hydrogel allows for fracture healing upon clearance of a high Staphylococcus aureus load in a rabbit model. European Cells and Materials, 2018, 35, 151-164.	8.0	19

David Eglin

#	Article	IF	CITATIONS
91	A doxycycline inducible, adenoviral bone morphogenetic protein-2 gene delivery system to bone. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e106-e118.	1.3	18
92	Improved Chondrogenic Differentiation of rAAV SOX9-Modified Human MSCs Seeded in Fibrin-Polyurethane Scaffolds in a Hydrodynamic Environment. International Journal of Molecular Sciences, 2018, 19, 2635.	1.8	18
93	Inhibition of hypertrophy and improving chondrocyte differentiation by MMP-13 inhibitor small molecule encapsulated in alginate-chondroitin sulfate-platelet lysate hydrogel. Stem Cell Research and Therapy, 2020, 11, 436.	2.4	18
94	Singleâ€stage revision of MRSA orthopedic deviceâ€related infection in sheep with an antibioticâ€loaded hydrogel. Journal of Orthopaedic Research, 2021, 39, 438-448.	1.2	18
95	Comparative study of thein vitro apatite-forming ability of poly(?-caprolactone)-silica sol-gels using three osteoconductivity tests (static, dynamic, and alternate soaking process). Journal of Biomedical Materials Research Part B, 2004, 69A, 718-727.	3.0	17
96	Poly(Aspartic Acid) Functionalized Poly(Ϊμ-Caprolactone) Microspheres with Enhanced Hydroxyapatite Affinity as Bone Targeting Antibiotic Carriers. Pharmaceutics, 2020, 12, 885.	2.0	17
97	Thiol-Containing Degradable Poly(thiourethane-urethane)s for Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 477-491.	1.9	16
98	Evaluation of a press-fit osteochondral poly(ester-urethane) scaffold in a rabbit defect model. Journal of Materials Science: Materials in Medicine, 2014, 25, 1691-1700.	1.7	16
99	Thermo-Responsive Antimicrobial Hydrogel for the In-Situ Coating of Mesh Materials for Hernia Repair. Polymers, 2020, 12, 1245.	2.0	16
100	Combined release of platelet-rich plasma and 3D-mesenchymal stem cell encapsulation in alginate hydrogels modified by the presence of silica. Journal of Materials Chemistry, 2011, 21, 4086.	6.7	15
101	Microâ€porous composite scaffolds of photoâ€crosslinked poly(trimethylene carbonate) and nanoâ€hydroxyapatite prepared by lowâ€temperature extrusionâ€based additive manufacturing. Polymers for Advanced Technologies, 2017, 28, 1226-1232.	1.6	15
102	Novel In Situ Gelling Hydrogels Loaded with Recombinant Collagen Peptide Microspheres as a Slowâ€Release System Induce Ectopic Bone Formation. Advanced Healthcare Materials, 2018, 7, e1800507.	3.9	15
103	Cells and Biomaterials for Intervertebral Disc Regeneration. Synthesis Lectures on Tissue Engineering, 2010, 2, 1-104.	0.3	14
104	Calcium phosphate/thermoresponsive hyaluronan hydrogel composite delivering hydrophilic and hydrophobic drugs. Journal of Orthopaedic Translation, 2016, 5, 57-68.	1.9	14
105	Novel stepwise model of intervertebral disc degeneration with intact annulus fibrosus to test regeneration strategies. Journal of Orthopaedic Research, 2018, 36, 2460-2468.	1.2	14
106	Electrospray-Based Microencapsulation of Epigallocatechin 3-Gallate for Local Delivery into the Intervertebral Disc. Pharmaceutics, 2019, 11, 435.	2.0	13
107	Efficacy of antimicrobial agents delivered to hernia meshes using an adaptable thermo-responsive hyaluronic acid-based coating. Hernia: the Journal of Hernias and Abdominal Wall Surgery, 2020, 24, 1201-1210.	0.9	13
108	Long term outcomes of biomaterial-mediated repair of focal cartilage defects in a large animal model. , 2021, 41, 40-51.		13

Article	IF	CITATIONS
Silk Fiber-Reinforced Hyaluronic Acid-Based Hydrogel for Cartilage Tissue Engineering. International Journal of Molecular Sciences, 2021, 22, 3635.	1.8	12
Evaluation of a new press-fit in situ setting composite porous scaffold for cancellous bone repair: Towards a "surgeon-friendly―bone filler?. Acta Biomaterialia, 2010, 6, 3808-3812.	4.1	11
A drug eluting poly(trimethylene carbonate)/poly(lactic acid)-reinforced nanocomposite for the functional delivery of osteogenic molecules. International Journal of Nanomedicine, 2018, Volume 13, 5701-5718.	3.3	10
Local Application of a Gentamicin-Loaded Hydrogel Early After Injury Is Superior to Perioperative Systemic Prophylaxis in a Rabbit Open Fracture Model. Journal of Orthopaedic Trauma, 2020, 34, 231-237.	0.7	10
Osteogenic differentiation of hBMSCs on porous photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites. European Polymer Journal, 2021, 147, 110335.	2.6	10
Stromal Cell Derived Factor-1-Mediated Migration of Mesenchymal Stem Cells Enhances Collagen Type Il Expression in Intervertebral Disc. Tissue Engineering - Part A, 2018, 24, 1818-1830.	1.6	10
Collagen-silica hybrid materials: sodium silicate and sodium chloride effects on type I collagen fibrillogenesis. Bio-Medical Materials and Engineering, 2005, 15, 43-50.	0.4	10
A statistical study of poly(?-caprolactone) crystallinity in poly(?-caprolactone)-silica sol-gel materials and theirin vitro calcium phosphate-forming ability. Polymer International, 2003, 52, 1807-1819.	1.6	9
Bone and cartilage differentiation of a single stem cell population driven by material interface. Journal of Tissue Engineering, 2017, 8, 204173141770561.	2.3	9
Laser etched carbon fibre composites: Disposable detectors for flow analysis applications. Electrochemistry Communications, 2006, 8, 1315-1320.	2.3	8
Preparation of gentamicin dioctyl sulfosuccinate loaded poly(trimethylene carbonate) matrices intended for the treatment of orthopaedic infections. Clinical Hemorheology and Microcirculation, 2015, 60, 89-98.	0.9	8
Coaxial micro-extrusion of a calcium phosphate ink with aqueous solvents improves printing stability, structure fidelity and mechanical properties. Acta Biomaterialia, 2021, 125, 322-332.	4.1	7
A Statistical Approach to the Effect of Sol-Gel Process Variables on the Physical Properties of Polymer [PLLA]-Silica Hybrid Materials for Use as Biomaterials. Materials Research Society Symposia Proceedings, 2002, 726, 1.	0.1	6
Role of myeloid early endothelial progenitor cells in bone formation and osteoclast differentiation in tissue construct based on hydroxyapatite poly(esterâ€urethane) scaffolds. Journal of Orthopaedic Research, 2016, 34, 1922-1932.	1.2	6
Gene activated matrices for bone and cartilage regeneration in arthritis. European Journal of Nanomedicine, 2012, 4, .	0.6	5
Two-step labeling of Staphylococcus aureus with Lysostaphin-Azide and DIBO-Alexa using click chemistry. Journal of Microbiological Methods, 2013, 92, 90-98.	0.7	5
Hyaluronic acid derivatives and its polyelectrolyte complexes with gentamicin as a delivery system for antibiotics. Polymers for Advanced Technologies, 2017, 28, 1325-1333.	1.6	5
Introduction of the Anspach drill as a novel surgical driller for creating calvarial defects in animal models. Journal of Orthopaedic Research, 2019, 37, 1183-1191.	1.2	4
	Journal of Molecular Sciences, 2021, 22, 3635. Evaluation of a new press-fit in situ setting composite porous scaffold for cancellous bone repair: Towards a & & & & & & & & & & & & & & & & & &	journal of Molecular Sciences, 2021, 22, 3635. 13 Evaluation of a new press-fit in situ setting composite porous scaffold for cancellous bone repair: Towards a & Cesurgeon/Friendy&Coone filler?. Acta Biomaterialia, 2010, 6, 3808-3812. 4.1 A drug cluting poly(frimethylene carbonate)/poly(lactic acid)-reinforced nanocomposite for the functional delwey of osteogenic molecules. International Journal of Nanomedicine, 2018, Volume 13, 5701-5718. 3.3 Local Application of a Gentamicin-Loaded Hydrogel Early After Injury Is Superior to Perioperative Systemic Prophylaxis in a Rabbit Open Fracture Model. Journal of Orthopaedic Trauma, 2020, 34, 231-237. 0.7 Osteogenic differentiation of hBMSCs on porcus photo-crosslinked poly(trimethylene carbonate) and nano-Hydroxypatitic composites. European Polymeri Journal, 2021, 147, 11035. 2.6 Stromal Cell Derived Factor-1-Mediated Migration of Mesenchymal Stem Cells Enhances Collagen Type II Expression in Intervertebral Disc. Tissue Engineering - Part A, 2018, 24, 1818-1830. 1.6 Collagensilica hybrid materials: sodium silicate and sodium chloride effects on type I collagen fibrillogenesis. Bio-Medical Materials and Engineering, 2005, 15, 43-50. 0.4 A statistical study of poly(7-caprolactone) crystallinity in poly(2-caprolactone)-silica sol-gel materials and theirin vitro calcium phosphate forming ability. Polymer International, 2003, 52, 1807-1813. 1.6 Bone and cartilage differentiation of a single stem cell population driven by material Interface. 2.3 Preparation of gentamicin dioctyl sulfos

#	Article	IF	CITATIONS
127	An Antibiotic-Loaded Hydrogel Demonstrates Efficacy as Prophylaxis and Treatment in a Large Animal Model of Orthopaedic Device-Related Infection. Frontiers in Cellular and Infection Microbiology, 2022, 12, 826392.	1.8	4
128	Mineralizing Coating on 3D Printed Scaffolds for the Promotion of Osseointegration. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
129	A New Class II Poly (ε-Caprolactone)-Silica Hybrid: Synthesis and In Vitro Apatite Forming Ability. Journal of Bioactive and Compatible Polymers, 2005, 20, 437-454.	0.8	3
130	The RAPIDOS project—European and Chinese collaborative research on biomaterials. Journal of Orthopaedic Translation, 2015, 3, 78-84.	1.9	3
131	Copper catalyst efficiency for the CuAAC synthesis of a poly(N-isopropylacrylamide) conjugated hyaluronan. Clinical Hemorheology and Microcirculation, 2015, 60, 25-37.	0.9	1