
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6463411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insight into the Origin of Trapping in Polymer/Fullerene Blends with a Systematic Alteration of the Fullerene to Higher Adducts. Journal of Physical Chemistry C, 2022, 126, 2708-2719.	3.1	1
2	Enhanced Interfacial Electron Transfer Kinetics Between Co ^{2+/3} + Complexes and Organic Dyes with Free Space Near Their Backbone. Physical Chemistry Chemical Physics, 2022, , .	2.8	1
3	Electrochemical CO ₂ Reduction Catalyzed by Copper Molecular Complexes: The Influence of Ligand Structure. Energy & Fuels, 2022, 36, 4653-4676.	5.1	19
4	Substrate-Dependent Electron-Transfer Rate of Mixed-Ligand Electrolytes: Tuning Electron-Transfer Rate without Changing Driving Force. Journal of the American Chemical Society, 2021, 143, 488-495.	13.7	9
5	The impact of insufficient time resolution on dye regeneration lifetime determined using transient absorption spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 13001-13010.	2.8	3
6	Solid State Photon Up-Conversion Emission from Chromophore-Tethered PPV Films. Journal of Physical Chemistry C, 2021, 125, 14538-14548.	3.1	6
7	Multisample Correlation Reveals the Origin of the Photocurrent of an Unstable Cu ₂ 0 Photocathode during CO ₂ Reduction. Journal of Physical Chemistry Letters, 2021, 12, 8157-8163.	4.6	4
8	Flexible Polymer X-ray Detectors with Non-fullerene Acceptors for Enhanced Stability: Toward Printable Tissue Equivalent Devices for Medical Applications. ACS Applied Materials & Interfaces, 2021, 13, 57703-57712.	8.0	12
9	Optical analysis of an integrated solar cell and a photon up converter, providing guidance for future device engineering efforts. Journal of Applied Physics, 2021, 130, 194501.	2.5	2
10	Synergistic Effect of Alkyl Chain Barriers on Heteroleptic Ruthenium Dyes and Co ^{3+/2+} Complex Mediators for Reduced Charge Recombination in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2020, 124, 23013-23026.	3.1	11
11	Significant Effect of Electronic Coupling on Electron Transfer between Surface-Bound Porphyrins and Co ^{2+/3+} Complex Electrolytes. Journal of Physical Chemistry C, 2020, 124, 9178-9190.	3.1	10
12	Light soaking effect driven in porphyrin dye-sensitized solar cells using 1D TiO2 nanotube photoanodes. Sustainable Materials and Technologies, 2020, 24, e00165.	3.3	9
13	Effects of Interfacial Layers on the Open Circuit Voltage of Polymer/Fullerene Bulk Heterojunction Devices Studied by Charge Extraction Techniques. ACS Applied Materials & Interfaces, 2019, 11, 21030-21041.	8.0	3
14	Quantitative characterisation of conductive fibers by capacitive coupling. Analyst, The, 2018, 143, 215-223.	3.5	5
15	Exploiting Intermolecular Interactions between Alkyl-Functionalized Redox-Active Molecule Pairs to Enhance Interfacial Electron Transfer. Journal of the American Chemical Society, 2018, 140, 13935-13944.	13.7	18
16	A coupled chemo-mechanical model to study the effects of adhesive strength on the electrochemical performance of silicon electrodes for advanced lithium ion batteries. Journal of Power Sources, 2018, 407, 153-161.	7.8	14
17	Investigation of S-shaped current-voltage characteristics in high-performance solution-processed small molecule bulk heterojunction solar cells. Organic Electronics, 2018, 62, 133-141.	2.6	7
18	Quantifying Recombination Losses during Charge Extraction in Bulk Heterojunction Solar Cells Using a Modified Charge Extraction Technique. Advanced Energy Materials, 2017, 7, 1602026.	19.5	11

#	Article	IF	CITATIONS
19	Origin of Photoelectrochemical Generation of Dihydrogen by a Dye-Sensitized Photocathode without an Intentionally Introduced Catalyst. Journal of Physical Chemistry C, 2017, 121, 25836-25846.	3.1	16
20	Enhancement of dye regeneration kinetics in dichromophoric porphyrin–carbazole triphenylamine dyes influenced by more exposed radical cation orbitals. Chemical Science, 2016, 7, 3506-3516.	7.4	29
21	Photo-electrocatalytic hydrogen generation at dye-sensitised electrodes functionalised with a heterogeneous metal catalyst. Electrochimica Acta, 2016, 219, 773-780.	5.2	22
22	Comparison of inorganic electron transport layers in fully roll-to-roll coated/printed organic photovoltaics in normal geometry. Journal of Materials Chemistry A, 2016, 4, 15986-15996.	10.3	23
23	A Novel Covalently Linked Zn Phthalocyanineâ€Zn Porphyrin Dyad for Dyeâ€sensitized Solar Cells. Israel Journal of Chemistry, 2016, 56, 175-180.	2.3	6
24	Bimolecular Recombination in a Low Bandgap Polymer:PCBM Blend Solar Cell with a High Dielectric Constant. Journal of Physical Chemistry C, 2016, 120, 7033-7043.	3.1	34
25	Characterisation of graphene fibres and graphene coated fibres using capacitively coupled contactless conductivity detector. Analyst, The, 2016, 141, 2774-2782.	3.5	12
26	Enhanced Electron Lifetime of CdSe/CdS Quantum Dot (QD) Sensitized Solar Cells Using ZnSe Core–Shell Structure with Efficient Regeneration of Quantum Dots. Journal of Physical Chemistry C, 2015, 119, 2297-2307.	3.1	43
27	Disorder engineering of undoped TiO ₂ nanotube arrays for highly efficient solar-driven oxygen evolution. Physical Chemistry Chemical Physics, 2015, 17, 5642-5649.	2.8	24
28	Dichromophoric Zinc Porphyrins: Filling the Absorption Gap between the Soret and Q Bands. Journal of Physical Chemistry C, 2015, 119, 5350-5363.	3.1	19
29	Tuning Non-Langevin Recombination in an Organic Photovoltaic Blend Using a Processing Additive. Journal of Physical Chemistry C, 2015, 119, 7016-7021.	3.1	14
30	Driving Force Dependence of Electron Transfer Kinetics and Yield in Low-Band-Gap Polymer Donor–Acceptor Organic Photovoltaic Blends. Journal of Physical Chemistry C, 2015, 119, 12829-12837.	3.1	12
31	An intermediate band dye-sensitised solar cell using triplet–triplet annihilation. Physical Chemistry Chemical Physics, 2015, 17, 24826-24830.	2.8	77
32	Enhanced Electron Lifetimes in Dye-Sensitized Solar Cells Using a Dichromophoric Porphyrin: The Utility of Intermolecular Forces. ACS Applied Materials & Interfaces, 2015, 7, 22078-22083.	8.0	14
33	Trap-Assisted Transport and Non-Uniform Charge Distribution in Sulfur-Rich PbS Colloidal Quantum Dot-based Solar Cells with Selective Contacts. ACS Applied Materials & Interfaces, 2015, 7, 26455-26460.	8.0	9
34	A Comparison of Five Experimental Techniques to Measure Charge Carrier Lifetime in Polymer/Fullerene Solar Cells. Advanced Energy Materials, 2015, 5, 1401345.	19.5	115
35	Mesoporous anatase single crystals for efficient Co(2+/3+)-based dye-sensitized solar cells. Nano Energy, 2015, 11, 557-567.	16.0	54
36	Enhanced performance of dye-sensitized solar cells using carbazole-substituted di-chromophoric porphyrin dyes. Journal of Materials Chemistry A, 2014, 2, 16963-16977.	10.3	30

#	Article	IF	CITATIONS
37	The role of emissive charge transfer states in two polymer–fullerene organic photovoltaic blends: tuning charge photogeneration through the use of processing additives. Journal of Materials Chemistry A, 2014, 2, 12583-12593.	10.3	13
38	Photodegradation in Encapsulated Siloleâ€Based Polymer: PCBM Solar Cells Investigated using Transient Absorption Spectroscopy and Charge Extraction Measurements. Advanced Energy Materials, 2013, 3, 1473-1483.	19.5	45
39	A Nonconjugated Bridge in Dimer-Sensitized Solar Cells Retards Charge Recombination without Decreasing Charge Injection Efficiency. ACS Applied Materials & Interfaces, 2013, 5, 10824-10829.	8.0	17
40	Cation Exchange at Semiconducting Oxide Surfaces: Origin of Light-Induced Performance Increases in Porphyrin Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 11885-11898.	3.1	20
41	Dye-Sensitized Solar Cell with Integrated Triplet–Triplet Annihilation Upconversion System. Journal of Physical Chemistry Letters, 2013, 4, 2073-2078.	4.6	158
42	Effects of atomic layer deposited thin films on dye sensitized solar cell performance. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 01A157.	2.1	8
43	Reduced Bimolecular Recombination in Conjugated Polymer Donor/Fullerene Acceptor Bulk Heterojunction Solar Cells. Australian Journal of Chemistry, 2012, 65, 442.	0.9	1
44	Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps. Chemical Communications, 2012, 48, 4145.	4.1	215
45	Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells. Organic Electronics, 2012, 13, 2639-2646.	2.6	92
46	Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device. Energy and Environmental Science, 2012, 5, 9472.	30.8	167
47	Synthesis and characterization of perylene–bithiophene–triphenylamine triads: studies on the effect of alkyl-substitution in p-type NiO based photocathodes. Journal of Materials Chemistry, 2012, 22, 7366.	6.7	60
48	Non-Langevin bimolecular recombination in a silole-based polymer:PCBM solar cell measured by time-resolved charge extraction and resistance-dependent time-of-flight techniques. Energy and Environmental Science, 2012, 5, 5241-5245.	30.8	42
49	Dye Regeneration Kinetics in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2012, 134, 16925-16928.	13.7	235
50	Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators. Energy and Environmental Science, 2012, 5, 7090.	30.8	156
51	Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology, 2012, 23, 085201.	2.6	135
52	Aqueous Dye‧ensitized Solar Cell Electrolytes Based on the Ferricyanide–Ferrocyanide Redox Couple. Advanced Materials, 2012, 24, 1222-1225.	21.0	110
53	Coexistence of Femtosecond- and Nonelectron-Injecting Dyes in Dye-Sensitized Solar Cells: Inhomogeniety Limits the Efficiency. Journal of Physical Chemistry C, 2011, 115, 22084-22088.	3.1	53
54	Significant Performance Improvement of Porphyrin-Sensitized TiO ₂ Solar Cells under White Light Illumination. Journal of Physical Chemistry C, 2011, 115, 317-326.	3.1	42

#	Article	IF	CITATIONS
55	Sodium Fluoride-Assisted Modulation of Anodized TiO ₂ Nanotube for Dye-Sensitized Solar Cells Application. ACS Applied Materials & Interfaces, 2011, 3, 1585-1593.	8.0	42
56	Remarkable synergistic effects in a mixed porphyrin dye-sensitized TiO2 film. Applied Physics Letters, 2011, 98, .	3.3	33
57	Perylene Sensitization of Fullerenes for Improved Performance in Organic Photovoltaics. Advanced Energy Materials, 2011, 1, 861-869.	19.5	49
58	Significantly Reduced Bimolecular Recombination in a Novel Siloleâ€Based Polymer: Fullerene Blend. Advanced Energy Materials, 2011, 1, 1062-1067.	19.5	61
59	Organic Solar Cells: Significantly Reduced Bimolecular Recombination in a Novel Siloleâ€Based Polymer: Fullerene Blend (Adv. Energy Mater. 6/2011). Advanced Energy Materials, 2011, 1, 974-974.	19.5	0
60	Charge Transport in Dye-Sensitized Solar Cells Based on Flame-made \$hbox{TiO}_{m 2}\$ Nanoparticles. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1641-1648.	2.9	16
61	The effect of molecule size and shape on free charge generation, transport and recombination in all-thiophene dendrimer:fullerene bulk heterojunctions. Organic Electronics, 2010, 11, 573-582.	2.6	26
62	Highly efficient photocathodes for dye-sensitized tandem solar cells. Nature Materials, 2010, 9, 31-35.	27.5	585
63	Microsecond Dye Regeneration Kinetics in Efficient Solid State Dye-Sensitized Solar Cells Using a Photoelectrochemically Deposited PEDOT Hole Conductor. Journal of the American Chemical Society, 2010, 132, 9543-9545.	13.7	30
64	Injection Limitations in a Series of Porphyrin Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 3276-3279.	3.1	94
65	Flexible and Compressible Goretexâ^'PEDOT Membrane Electrodes for Solid-State Dye-Sensitized Solar Cells. Langmuir, 2010, 26, 1452-1455.	3.5	23
66	Nanoelectrodes: energy conversion and storage. Materials Today, 2009, 12, 20-27.	14.2	61
67	Znâ^'Zn Porphyrin Dimer-Sensitized Solar Cells: Toward 3-D Light Harvesting. Journal of the American Chemical Society, 2009, 131, 15621-15623.	13.7	177
68	Improved performance of porphyrin-based dye sensitised solar cells by phosphinic acid surface treatment. Energy and Environmental Science, 2009, 2, 1069.	30.8	49
69	Porphyrin dimers harvest more sunlight for next-generation solar cells. SPIE Newsroom, 2009, , .	0.1	0
70	The origin of open circuit voltage of porphyrin-sensitised TiO2 solar cells. Chemical Communications, 2008, , 4741.	4.1	97
71	Enhanced Performance of Dye Sensitized Solar Cells Utilizing Platinum Electrodeposit Counter Electrodes. Journal of the Electrochemical Society, 2008, 155, K124.	2.9	60
72	Evidence for Encaging Luminescent Guest Molecules in the Inner Cages of Zeolite Host. Bulletin of the Chemical Society of Japan, 2007, 80, 2303-2312.	3.2	6

#	Article	IF	CITATIONS
73	Efficient dye-sensitized solar cells based on a 2-thiophen-2-yl-vinyl-conjugated ruthenium photosensitizer and a conjugated polymer hole conductor. Applied Physics Letters, 2006, 89, 043509.	3.3	43
74	Conjugated polymer photovoltaic devices and materials. Comptes Rendus Chimie, 2006, 9, 568-577.	0.5	84
75	Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulk-heterojunction solar cells. Organic Electronics, 2006, 7, 229-234.	2.6	161
76	Photovoltaic activity of a PolyProDOT derivative in a bulk heterojunction solar cell. Solar Energy Materials and Solar Cells, 2006, 90, 3531-3546.	6.2	18
77	Recombination of photogenerated and injected charge carriers in π-conjugated polymer/fullerene blends. Thin Solid Films, 2006, 511-512, 224-227.	1.8	40
78	Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique. Applied Physics Letters, 2005, 86, 112104.	3.3	184
79	Charge carrier mobility in regioregular poly(3-hexylthiophene) probed by transient conductivity techniques: A comparative study. Physical Review B, 2005, 71, .	3.2	249
80	Double injection as a technique to study charge carrier transport and recombination in bulk-heterojunction solar cells. Applied Physics Letters, 2005, 87, 222110.	3.3	45
81	Time-dependent mobility and recombination of the photoinduced charge carriers in conjugated polymer/fullerene bulk heterojunction solar cells. Physical Review B, 2005, 72, .	3.2	209
82	Bimolecular Recombination Coefficient as a Sensitive Testing Parameter for Low-Mobility Solar-Cell Materials. Physical Review Letters, 2005, 94, 176806.	7.8	297
83	Novel Regiospecific MDMO-PPV Polymers with Improved Charge Transport Properties for Bulk Heterojunction Solar Cells. Synthetic Metals, 2005, 153, 81-84.	3.9	16
84	Negative electric field dependence of charge carrier drift mobility in conjugated, semiconducting polymers. Chemical Physics Letters, 2004, 389, 438-442.	2.6	146
85	Novel Regiospecific MDMOâ^'PPV Copolymer with Improved Charge Transport for Bulk Heterojunction Solar Cells. Journal of Physical Chemistry B, 2004, 108, 5235-5242.	2.6	86
86	Tuning of the photoinduced charge transfer process in donor-acceptor double-cable copolymers. , 2004, 5215, 41.		0
87	Effect of Molecular Structure on Interfacial Electron Transfer Kinetics in the Framework of Classical Marcus Theory. Israel Journal of Chemistry, 0, , .	2.3	1
88	Molecular Geometry Dependent Electronic Coupling and Reorganization Energy for Electron Transfer between Dye Molecule Adsorbed on TiO2 Electrode and Co Complex in Electrolyte Solutions. Journal of Physical Chemistry C, 0, , .	3.1	2