

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6463397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	General Trends in the Performance of Quantum Dot Luminescent Solar Concentrators (LSCs) Revealed Using the "Effective LSC Quality Factor― ACS Energy Letters, 2022, 7, 1741-1749.	17.4	16
2	Spectroscopic insights into high defect tolerance of Zn:CuInSe2 quantum-dot-sensitized solar cells. Nature Energy, 2020, 5, 409-417.	39.5	86
3	Solar Paint from TiO2 Particles Supported Quantum Dots for Photoanodes in Quantum Dot–Sensitized Solar Cells. ACS Omega, 2018, 3, 1102-1109.	3.5	24
4	Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells. RSC Advances, 2018, 8, 3637-3645.	3.6	52
5	Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12%. Advanced Materials, 2018, 30, 1705746.	21.0	148
6	Metal–organic framework derived Co,N-bidoped carbons as superior electrode catalysts for quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2018, 6, 2129-2138.	10.3	41
7	Alloying Strategy in Cu–In–Ga–Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 5328-5336.	8.0	87
8	Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12%. Journal of Physical Chemistry Letters, 2017, 8, 559-564.	4.6	193
9	Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte. Journal of Materials Chemistry A, 2017, 5, 14124-14133.	10.3	86
10	Copper deficient Zn–Cu–In–Se quantum dot sensitized solar cells for high efficiency. Journal of Materials Chemistry A, 2017, 5, 21442-21451.	10.3	73
11	Quasi-solid-state quantum dot sensitized solar cells with power conversion efficiency over 9% and high stability. Journal of Materials Chemistry A, 2016, 4, 14849-14856.	10.3	47
12	Improving Loading Amount and Performance of Quantum Dot-Sensitized Solar Cells through Metal Salt Solutions Treatment on Photoanode. ACS Applied Materials & Interfaces, 2016, 8, 31006-31015.	8.0	24
13	Poly(vinyl pyrrolidone): a superior and general additive in polysulfide electrolytes for high efficiency quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 11416-11421.	10.3	49
14	Zn–Cu–In–Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%. Journal of the American Chemical Society, 2016, 138, 4201-4209.	13.7	537
15	Highly efficient and stable quasi-solid-state quantum dot-sensitized solar cells based on a superabsorbent polyelectrolyte. Journal of Materials Chemistry A, 2016, 4, 1461-1468.	10.3	60
16	Performance enhancement of quantum dot sensitized solar cells by adding electrolyte additives. Journal of Materials Chemistry A, 2015, 3, 17091-17097.	10.3	49
17	Optimizing the deposition of CdSe colloidal quantum dots on TiO ₂ film electrode via capping ligand induced self-assembly approach. RSC Advances, 2015, 5, 86023-86030.	3.6	22