Robert D Harvey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6463056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compartmentalized cAMP signaling in cardiac ventricular myocytes. Cellular Signalling, 2022, 89, 110172.	1.7	9
2	Compartmentation of β ₂ â€adrenoceptor stimulated cAMP responses by phosphodiesterase types 2 and 3 in cardiac ventricular myocytes. British Journal of Pharmacology, 2021, 178, 1574-1587.	2.7	10
3	Illuminating cAMP Dynamics at Ryanodine Receptors in Arrhythmias. Circulation Research, 2021, 129, 95-97.	2.0	0
4	Mechanisms of cAMP compartmentation in cardiac myocytes: experimental and computational approaches to understanding. Journal of Physiology, 2021, 599, 4527-4544.	1.3	6
5	Mitochondrial Aâ€kinase anchoring proteins in cardiac ventricular myocytes. Physiological Reports, 2021, 9, e15015.	0.7	3
6	Phosphodiesterase 2 and 3 Regulate Compartmentalized Beta2-Adrenergic Receptor Camp Signaling. Biophysical Journal, 2020, 118, 595a-596a.	0.2	0
7	Effect of Adenylyl Cyclase Type 6 on Localized Production of cAMP by β-2 Adrenoceptors in Human Airway Smooth-Muscle Cells. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 104-110.	1.3	8
8	cAMP Signaling Compartmentation: Adenylyl Cyclases as Anchors of Dynamic Signaling Complexes. Molecular Pharmacology, 2018, 93, 270-276.	1.0	83
9	Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes. Frontiers in Pharmacology, 2018, 9, 332.	1.6	32
10	A multiscale computational modelling approach predicts mechanisms of female sex risk in the setting of arousalâ€induced arrhythmias. Journal of Physiology, 2017, 595, 4695-4723.	1.3	41
11	Compartmentalized cAMP responses to prostaglandin EP ₂ receptor activation in human airway smooth muscle cells. British Journal of Pharmacology, 2017, 174, 2784-2796.	2.7	30
12	Membrane Microdomains and cAMP Compartmentation in Cardiac Myocytes. Cardiac and Vascular Biology, 2017, , 17-35.	0.2	0
13	Mechanisms Restricting Diffusion of Intracellular cAMP. Scientific Reports, 2016, 6, 19577.	1.6	79
14	A Computational Modeling and Simulation Approach to Investigate Mechanisms of Subcellular cAMP Compartmentation. PLoS Computational Biology, 2016, 12, e1005005.	1.5	43
15	Mitochondrial Buffering of cAMP in Adult Cardiac Myocytes. FASEB Journal, 2015, 29, 946.3.	0.2	0
16	Role of Membrane Microdomains in Compartmentation of cAMP Signaling. PLoS ONE, 2014, 9, e95835.	1.1	75
17	Caveolin Contributes to the Modulation of Basal and β-Adrenoceptor Stimulated Function of the Adult Rat Ventricular Myocyte by Simvastatin: A Novel Pleiotropic Effect. PLoS ONE, 2014, 9, e106905.	1.1	20
18	Regulation of CAMP Compartmentation by Membrane Microdomains. Biophysical Journal, 2013, 104,	0.2	0

ROBERT D HARVEY

#	Article	IF	CITATIONS
19	CaV1.2 signaling complexes in the heart. Journal of Molecular and Cellular Cardiology, 2013, 58, 143-152.	0.9	70
20	Caveolae compartmentalise β2-adrenoceptor signals by curtailing cAMP production and maintaining phosphatase activity in the sarcoplasmic reticulum of the adult ventricular myocyte. Journal of Molecular and Cellular Cardiology, 2012, 52, 388-400.	0.9	80
21	Caveolae create local signalling domains through their distinct protein content, lipid profile and morphology. Journal of Molecular and Cellular Cardiology, 2012, 52, 366-375.	0.9	88
22	Muscarinic Receptor Agonists and Antagonists: Effects on Cardiovascular Function. Handbook of Experimental Pharmacology, 2012, , 299-316.	0.9	65
23	Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2011, 50, 500-509.	0.9	67
24	<i>How uniform is cAMP signaling?</i> Focus on "Systems analysis of GLP-1 receptor signaling in pancreatic β-cells― American Journal of Physiology - Cell Physiology, 2011, 301, C775-C776.	2.1	1
25	SPATIAL AND TEMPORAL ASPECTS OF cAMP SIGNALLING IN CARDIAC MYOCYTES. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 1343-1348.	0.9	17
26	Cytoplasmic cAMP concentrations in intact cardiac myocytes. American Journal of Physiology - Cell Physiology, 2008, 295, C414-C422.	2.1	83
27	Compartmentation of cAMP Signaling in Cardiac Myocytes: A Computational Study. Biophysical Journal, 2007, 92, 3317-3331.	0.2	90
28	cAMP microdomains and L-type Ca2+channel regulation in guinea-pig ventricular myocytes. Journal of Physiology, 2007, 580, 765-776.	1.3	64
29	β-Adrenergic- and muscarinic receptor-induced changes in cAMP activity in adult cardiac myocytes detected with FRET-based biosensor. American Journal of Physiology - Cell Physiology, 2005, 289, C455-C461.	2.1	65
30	Phosphodiesterase 4D Deficiency in the Ryanodine-Receptor Complex Promotes Heart Failure and Arrhythmias. Cell, 2005, 123, 25-35.	13.5	453
31	Protein kinase C regulates functional coupling of β1â€adrenergic receptors to Gi/oâ€mediated responses in cardiac myocytes. FASEB Journal, 2004, 18, 1-19.	0.2	17
32	Redox modulation of basal and \hat{l}^2 -adrenergically stimulated cardiac L-type Ca2+ channel activity by phenylarsine oxide. British Journal of Pharmacology, 2004, 142, 797-807.	2.7	19
33	Regulation of cardiac Na-Ca exchange activity by selective tyrosine kinase inhibition. British Journal of Pharmacology, 2004, 143, 929-930.	2.7	3
34	Muscarinic regulation of cardiac ion channels. British Journal of Pharmacology, 2003, 139, 1074-1084.	2.7	140
35	Genistein Inhibits Cardiac L-Type Ca2+Channel Activity by a Tyrosine Kinase-Independent Mechanism. Molecular Pharmacology, 2002, 62, 554-565.	1.0	46
36	AChâ€induced rebound stimulation of Lâ€type Ca 2+ current in guineaâ€pig ventricular myocytes, mediated by Gβγâ€dependent activation of adenylyl cyclase. Journal of Physiology, 2001, 536, 677-692.	1.3	31

ROBERT D HARVEY

#	Article	IF	CITATIONS
37	Chloride Channels in Heart. , 2001, , 373-388.		о
38	Muscarinic inhibitory and stimulatory regulation of the Lâ€ŧype Ca 2+ current is not altered in cardiac ventricular myocytes from mice lacking endothelial nitric oxide synthase. Journal of Physiology, 2000, 528, 279-289.	1.3	42
39	Tyrosine Phosphatase Inhibitors Selectively Antagonize β-Adrenergic Receptor-Dependent Regulation of Cardiac Ion Channels. Molecular Pharmacology, 2000, 58, 1213-1221.	1.0	19
40	Genistein Increases the Sensitivity of Cardiac Ion Channels to \hat{I}^2 -Adrenergic Receptor Stimulation. Circulation Research, 1998, 83, 33-42.	2.0	50
41	PKC regulation of cardiac CFTR Clâ^' channel function in guinea pig ventricular myocytes. American Journal of Physiology - Cell Physiology, 1998, 275, C293-C302.	2.1	36
42	Role of β1- and β2-adrenergic receptors in regulation of Clâ^' and Ca2+ channels in guinea pig ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H1669-H1676.	1.5	23
43	Role of G Proteins in α1-Adrenergic Inhibition of the β-Adrenergically Activated Chloride Current in Cardiac Myocytes. Molecular Pharmacology, 1997, 51, 853-860.	1.0	17
44	Pharmacological Evidence that Calcium is Not Required for P 2 -Receptor-Stimulated Cl â^' Secretion in HT29-Cl.16E. Journal of Membrane Biology, 1997, 155, 239-246.	1.0	11
45	Cardiac Chloride Currents. Physiology, 1996, 11, 175-181.	1.6	10
46	Nitric Oxide Synthase Activity in Guinea Pig Ventricular Myocytes Is Not Involved in Muscarinic Inhibition of cAMP-Regulated Ion Channels. Circulation Research, 1996, 78, 925-935.	2.0	28
47	α ₁ -Adrenergic Inhibition of the β-Adrenergically Activated Cl ^{â^'} Current in Guinea Pig Ventricular Myocytes. Circulation Research, 1996, 78, 1090-1099.	2.0	24
48	Stimulation of Cl- secretion by extracellular ATP does not depend on increased cytosolic Ca2+ in HT-29.cl16E. American Journal of Physiology - Cell Physiology, 1995, 269, C1457-C1463.	2.1	41
49	Altered beta-adrenergic and muscarinic response of CFTR Cl- current in dialyzed cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 1995, 268, H1795-H1802.	1.5	6
50	Effects of stilbenedisulfonic acid derivatives on the cAMP-regulated chloride current in cardiac myocytes. Pflugers Archiv European Journal of Physiology, 1993, 422, 436-442.	1.3	27
51	Enhanced functional expression of transient outward current in hypertrophied feline myocytes. Cardiovascular Drugs and Therapy, 1993, 7, 611-619.	1.3	33
52	On the mechanism of rectification of the isoproterenol-activated chloride current in guinea-pig ventricular myocytes Journal of General Physiology, 1993, 102, 871-895.	0.9	47
53	Tetramethylammonium activation of muscarinic receptors in cardiac ventricular myocytes. American Journal of Physiology - Cell Physiology, 1993, 264, C1625-C1630.	2.1	10
54	Regulation of the cAMP-Dependent Chloride Current in Cardiac Ventricular Myocytes. , 1992, , 221-229.		1

ROBERT D HARVEY

#	Article	IF	CITATIONS
55	Chloride conductance pathways in heart. American Journal of Physiology - Cell Physiology, 1991, 261, C399-C412.	2.1	104
56	Intracellular Na+ modulates the cAMP-dependent regulation of ion channels in the heart Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 6946-6950.	3.3	43
57	Chloride current in mammalian cardiac myocytes. Novel mechanism for autonomic regulation of action potential duration and resting membrane potential Journal of General Physiology, 1990, 95, 1077-1102.	0.9	158
58	Histamine Activates the Chloride Current in Cardiac Ventricular Myocytes. Journal of Cardiovascular Electrophysiology, 1990, 1, 309-317.	0.8	30
59	Isoproterenol activates a chloride current, not the transient outward current, in rabbit ventricular myocytes. American Journal of Physiology - Cell Physiology, 1989, 257, C1177-C1181.	2.1	58
60	Voltage-dependent block of cardiac inward-rectifying potassium current by monovalent cations Journal of General Physiology, 1989, 94, 349-361.	0.9	34
61	On the role of sodium ions in the regulation of the inward-rectifying potassium conductance in cat ventricular myocytes Journal of General Physiology, 1989, 94, 329-348.	0.9	35
62	Autonomic regulation of a chloride current in heart. Science, 1989, 244, 983-985.	6.0	252
63	Characterization of the inward-rectifying potassium current in cat ventricular myocytes Journal of General Physiology, 1988, 91, 593-615.	0.9	79
64	5-(N,N-dimethyl)amiloride-sensitive Na-Li exchange in isolated specimens of human atrium Journal of Clinical Investigation, 1988, 82, 1366-1375.	3.9	3