Tao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6462527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A): Could It Be a Promising Biomarker and Therapeutic Target in Parkinson's Disease?. Molecular Neurobiology, 2022, 59, 1333-1344.	1.9	1
2	The pyrethroids metabolite 3-phenoxybenzoic acid induces dopaminergic degeneration. Science of the Total Environment, 2022, 838, 156027.	3.9	5
3	The circadian clock protein Rev-erbα provides neuroprotection and attenuates neuroinflammation against Parkinson's disease via the microglial NLRP3 inflammasome. Journal of Neuroinflammation, 2022, 19, .	3.1	28
4	Melatonin ameliorates Parkinson's disease via regulating microglia polarization in a RORαâ€dependent pathway. Npj Parkinson's Disease, 2022, 8, .	2.5	13
5	A rare case of adult herpes simplex encephalitis complicated with rhabdomyolysis. BMC Infectious Diseases, 2021, 21, 110.	1.3	1
6	Reactive microglia enhance the transmission of exosomal α-synuclein via toll-like receptor 2. Brain, 2021, 144, 2024-2037.	3.7	57
7	Characteristic of Parkinson's disease with severe COVID-19: a study of 10 cases from Wuhan. Journal of Neural Transmission, 2021, 128, 37-48.	1.4	22
8	Targeting Microglial α-Synuclein/TLRs/NF-kappaB/NLRP3 Inflammasome Axis in Parkinson's Disease. Frontiers in Immunology, 2021, 12, 719807.	2.2	71
9	Asparagine endopeptidase inhibitor protects against fenpropathrin-induced neurodegeneration via suppressing α-synuclein aggregation and neuroinflammation. European Journal of Pharmacology, 2020, 888, 173586.	1.7	10
10	Investigation on sleep and mental health of patients with Parkinson's disease during the Coronavirus disease 2019 pandemic. Sleep Medicine, 2020, 75, 428-433.	0.8	36
11	Management of a Parkinson's disease patient with severe COVID-19 pneumonia. Therapeutic Advances in Chronic Disease, 2020, 11, 204062232094942.	1.1	7
12	The evaluation of sleep disturbances for Chinese frontline medical workers under the outbreak of COVID-19. Sleep Medicine, 2020, 72, 1-4.	0.8	132
13	Olfactory Dysfunction in Recovered Coronavirus Disease 2019 (<scp>COVID</scp> â€19) Patients. Movement Disorders, 2020, 35, 1100-1101.	2.2	25
14	The rs3129882/rs4248166 in HLA-DRA and rs34372695 in SYT11 are not associated with sporadic Parkinson's disease in Central Chinese population. International Journal of Neuroscience, 2020, 131, 1-7.	0.8	1
15	Clinical and immunological features of severe and moderate coronavirus disease 2019. Journal of Clinical Investigation, 2020, 130, 2620-2629.	3.9	3,820
16	REM Sleep Behavior Disorder (RBD). , 2020, , 19-24.		0
17	Exosomes from patients with Parkinson's disease are pathological in mice. Journal of Molecular Medicine, 2019, 97, 1329-1344	1.7	58
18	Reduced VMAT2 expression exacerbates the hyposmia in the MPTP model of Parkinson's disease. Biochemical and Biophysical Research Communications, 2019, 513, 306-312.	1.0	10

TAO WANG

#	Article	IF	CITATIONS
19	Microglia as modulators of exosomal alpha-synuclein transmission. Cell Death and Disease, 2019, 10, 174.	2.7	142
20	RBD and Neurodegenerative Diseases. Molecular Neurobiology, 2017, 54, 2997-3006.	1.9	26
21	The implication of neuronimmunoendocrine (NIE) modulatory network in the pathophysiologic process of Parkinson's disease. Cellular and Molecular Life Sciences, 2017, 74, 3741-3768.	2.4	9
22	2′,3′-Dideoxycytidine Protects Dopaminergic Neurons in a Mouse Model of Parkinson's Disease. Neurochemical Research, 2017, 42, 2996-3004.	1.6	3
23	Exosomes and Their Therapeutic Potentials of Stem Cells. Stem Cells International, 2016, 2016, 1-11.	1.2	155
24	Fenpropathrin, a Widely Used Pesticide, Causes Dopaminergic Degeneration. Molecular Neurobiology, 2016, 53, 995-1008.	1.9	37
25	Induced Pluripotent Stem Cells in Huntington's Disease: Disease Modeling and the Potential for Cell-Based Therapy. Molecular Neurobiology, 2016, 53, 6698-6708.	1.9	20
26	Lithium protects dopaminergic cells from rotenone toxicity via autophagy enhancement. BMC Neuroscience, 2015, 16, 82.	0.8	45
27	Stiff-person syndrome with central sleep apnea after thymoma excision: report of the first known case. Sleep Medicine, 2015, 16, 1578-1579.	0.8	3
28	flg2 as a potential biomarker of acute cerebral ischemic-reperfusion injury. Microvascular Research, 2015, 99, 36-42.	1.1	8
29	Effectiveness of Traditional Chinese Medicine as an Adjunct Therapy for Parkinson's Disease: A Systematic Review and Meta-Analysis. PLoS ONE, 2015, 10, e0118498.	1.1	45
30	Genetic Variants in GAPDH Confer Susceptibility to Sporadic Parkinson's Disease in a Chinese Han Population. PLoS ONE, 2015, 10, e0135425.	1.1	12
31	Cell Cycle Regulation of DNA Polymerase Beta in Rotenone-Based Parkinson's Disease Models. PLoS ONE, 2014, 9, e109697.	1.1	11
32	The Contribution of Cdc2 in Rotenone-Induced G2/M Arrest and Caspase-3-Dependent Apoptosis. Journal of Molecular Neuroscience, 2014, 53, 31-40.	1.1	8
33	The role of autophagy in Parkinson's disease: rotenone-based modeling. Behavioral and Brain Functions, 2013, 9, 13.	1.4	85
34	Dl-3-n-butylphthalide, a natural antioxidant, protects dopamine neurons in rotenone models for Parkinson's disease. Neurobiology of Aging, 2012, 33, 1777-1791.	1.5	92
35	Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models. Critical Reviews in Toxicology, 2012, 42, 613-632.	1.9	156
36	DNA polymerase-β is required for 1-methyl-4-phenylpyridinium-induced apoptotic death in neurons. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 105-115.	2.2	24

#	Article	IF	CITATIONS
37	Involvement of glyceraldehyde-3-phosphate dehydrogenase in rotenone-induced cell apoptosis: Relevance to protein misfolding and aggregation. Brain Research, 2009, 1279, 1-8.	1.1	57
38	Stereotaxical Infusion of Rotenone: A Reliable Rodent Model for Parkinson's Disease. PLoS ONE, 2009, 4, e7878.	1.1	94