R Geeta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6462351/publications.pdf Version: 2024-02-01

P CEETA

#	Article	IF	CITATIONS
1	Homologies in Leaf Form Inferred from KNOXI Gene Expression During Development. Science, 2002, 296, 1858-1860.	6.0	405
2	Compound Leaf Development and Evolution in the Legumes. Plant Cell, 2007, 19, 3369-3378.	3.1	145
3	Endophytic Phomopsis species: host range and implications for diversity estimates. Canadian Journal of Microbiology, 2006, 52, 673-680.	0.8	122
4	Did homeodomain proteins duplicate before the origin of angiosperms, fungi, and metazoa?. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13749-13753.	3.3	105
5	Phylogenetic relationships and evolution of the KNOTTED class of plant homeodomain proteins. Molecular Biology and Evolution, 1999, 16, 553-563.	3.5	69
6	The Growth of Phylogenetic Information and the Need for a Phylogenetic Data Base. Systematic Biology, 1993, 42, 562-568.	2.7	58
7	Protein subcellular relocalization: a new perspective on the origin of novel genes. Trends in Ecology and Evolution, 2007, 22, 338-344.	4.2	54
8	The origin and maintenance of nuclear endosperms: viewing development through a phylogenetic lens. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 29-35.	1.2	45
9	Keeping it simple: flowering plants tend to retain, and revert to, simple leaves. New Phytologist, 2012, 193, 481-493.	3.5	34
10	Does Cladistic Information Affect Inferences about Branching Rates?. Systematic Biology, 1993, 42, 1-17.	2.7	30
11	KNOTTED1-like homeobox genes of a gymnosperm, Norway spruce, expressed during somatic embryogenesis. Plant Physiology and Biochemistry, 2002, 40, 837-843.	2.8	28
12	Structure trees and species trees: what they say about morphological development and evolution. Evolution & Development, 2003, 5, 609-621.	1.1	27
13	Historical evidence for a pre-Columbian presence of Datura in the Old World and implications for a first millennium transfer from the New World. Journal of Biosciences, 2007, 32, 1227-1244.	0.5	27
14	True Yams <i>(Dioscorea):</i> A Biological and Evolutionary Link between Eudicots and Grasses. Cold Spring Harbor Protocols, 2009, 2009, pdb.emo136.	0.2	23
15	Microsynteny and phylogenetic analysis of tandemly organised miRNA families across five members of Brassicaceae reveals complex retention and loss history. Plant Science, 2016, 247, 35-48.	1.7	19
16	Reproductive development and nuclear DNA content in angiosperms. American Journal of Botany, 1996, 83, 440-451.	0.8	18
17	Functional interactions among tortoise beetle larval defenses reveal trait suites and escalation. Behavioral Ecology and Sociobiology, 2011, 65, 227-239.	0.6	18
18	Molecular systematics of Indian Crotalaria (Fabaceae) based on analyses of nuclear ribosomal ITS DNA sequences. Plant Systematics and Evolution, 2013, 299, 1089-1106.	0.3	14

R GEETA

#	Article	IF	CITATIONS
19	A segmental duplication in the common ancestor of Brassicaceae is responsible for the origin of the paralogs KCS6-KCS5, which are not shared with other angiosperms. Molecular Phylogenetics and Evolution, 2018, 126, 331-345.	1.2	13
20	Asynchronous male/female gametophyte development in facultative apomictic plants of Cenchrus ciliaris (Poaceae). South African Journal of Botany, 2014, 91, 19-31.	1.2	9
21	Biodiversity only makes sense in the light of evolution. Journal of Biosciences, 2014, 39, 333-337.	0.5	9
22	A modified protocol yields high-quality RNA from highly mucilaginous Dioscorea tubers. 3 Biotech, 2017, 7, 150.	1.1	9
23	Evolutionary correlation between floral monosymmetry and corolla pigmentation patterns in Rhododendron. Plant Systematics and Evolution, 2018, 304, 219-230.	0.3	8
24	Ancestral segmental duplication in Solanaceae is responsible for the origin of CRCa–CRCb paralogues in the family. Molecular Genetics and Genomics, 2020, 295, 563-577.	1.0	7
25	Origin and diversification of ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3) genes in land plants and phylogenetic evidence that the ancestral CER1/3 gene resulted from the fusion of pre-existing domains. Molecular Phylogenetics and Evolution, 2021, 159, 107101.	1.2	7
26	Phylogenetic analysis of Indian Dioscorea and comparison of secondary metabolite content with sampling across the tree. Genetic Resources and Crop Evolution, 2018, 65, 1003-1012.	0.8	6
27	Comparative sequence analysis across Brassicaceae, regulatory diversity in KCS5 and KCS6 homologs from Arabidopsis thaliana and Brassica juncea, and intronic fragment as a negative transcriptional regulator. Gene Expression Patterns, 2020, 38, 119146.	0.3	6
28	Missing the Subcellular Target: A Mechanism of Eukaryotic Gene Evolution. , 2009, , 175-183.		6
29	Taxonomists and the CBD. Science, 2004, 305, 1105-1106.	6.0	5
30	Yam (Dioscorea) Husbandry: Cultivating Yams in the Field or Greenhouse. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5324-pdb.prot5324.	0.2	5
31	Culturing Meristematic Tissue and Node Cuttings from Yams (<i>Dioscorea</i>). Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5325.	0.2	3
32	Molecular systematics of Indian Alysicarpus (Fabaceae) based on analyses of nuclear ribosomal DNA sequences. Journal of Genetics, 2017, 96, 353-363.	0.4	3
33	Dioscorea howardiana, a new species in Dioscorea section Trigonobasis (Dioscoreaceae). Brittonia, 2007, 59, 370-373.	0.8	2
34	Producing Yam <i>(Dioscorea)</i> Seeds through Controlled Crosses. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5327.	0.2	2
35	Post-Flask Management of Yam <i>(Dioscorea)</i> Plantlets. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5326.	0.2	2
36	Role of Cuticular Wax in Adaptation to Abiotic Stress: A Molecular Perspective. , 2018, , 155-182.		2

R Geeta

#	Article	IF	CITATIONS
37	Justicia adhatoda reveals two morphotypes with possible functional significance. Journal of Plant Research, 2020, 133, 783-805.	1.2	2
38	Revisiting N.I. Vavilov's "The Law of Homologous Series in Variation―(1922). Biological Theory, 2022, 17, 253-262.	0.8	2
39	Extraction of DNA from Yam <i>(Dioscorea)</i> Leaves. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5328.	0.2	1
40	Floral Symmetry – What It Is, How It Forms, and Why It Varies. , 2020, , 131-155.		1
41	Two unusual conjugated fatty acids, parinaric acid and α-eleostearic acid, are present in several Impatiens species, but not in congener Hydrocera triflora. Physiology and Molecular Biology of Plants, 2022, 28, 1109-1118.	1.4	1
42	Floral morphs of Justicia adhatoda L. differ in fruit and seed, but not floral, traits or pollinator visitation. Journal of Biosciences, 2021, 46, 1.	0.5	0