Weifeng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6462025/publications.pdf Version: 2024-02-01

414034 393982 1,057 32 19 32 citations h-index g-index papers 33 33 33 1473 docs citations times ranked citing authors all docs

WEIEENC L

#	Article	IF	CITATIONS
1	Ag@C Core/Shell Structured Nanoparticles:Â Controlled Synthesis, Characterization, and Assembly. Langmuir, 2005, 21, 6019-6024.	1.6	202
2	A Sensitive Sensor for trace Hg2+ Determination Based on Ultrathin g-C3N4 Modified Glassy Carbon Electrode. Electrochimica Acta, 2015, 186, 192-200.	2.6	91
3	Sensitive electrochemical sensor of tryptophan based on Ag@C core–shell nanocomposite modified glassy carbon electrode. Analytica Chimica Acta, 2012, 738, 35-40.	2.6	62
4	Core–shell structured Ag@C for direct electrochemistry and hydrogen peroxide biosensor applications. Biosensors and Bioelectronics, 2013, 48, 258-262.	5.3	58
5	Graphene-like carbon nitride nanosheet as a novel sensing platform for electrochemical determination of tryptophan. Journal of Colloid and Interface Science, 2017, 505, 964-972.	5.0	58
6	Immobilization of horseradish peroxidase on amino-functionalized carbon dots for the sensitive detection of hydrogen peroxide. Mikrochimica Acta, 2018, 185, 114.	2.5	52
7	Defect-rich hexagonal boron nitride for the simultaneous determination of 4-aminophenol and phenol. Sensors and Actuators B: Chemical, 2020, 303, 127248.	4.0	42
8	Single-source-precursor-assisted synthesis of porous WO3/g-C3N4 with enhanced photocatalytic property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123857.	2.3	41
9	In situ decoration of Au nanoparticles on carbon nitride using a single-source precursor and its application for the detection of tetracycline. Journal of Colloid and Interface Science, 2019, 536, 646-654.	5.0	39
10	A sensitive glucose biosensor based on Ag@C core–shell matrix. Materials Science and Engineering C, 2015, 49, 579-587.	3.8	38
11	Amino-functionalized mesoporous silica modified glassy carbon electrode for ultra-trace copper(II) determination. Analytica Chimica Acta, 2014, 848, 25-31.	2.6	35
12	Preparation of α-SnWO4/SnO2 heterostructure with enhanced visible-light-driven photocatalytic activity. Applied Surface Science, 2015, 357, 1528-1535.	3.1	34
13	Carbon-doped h-BN for the enhanced electrochemical determination of dopamine. Electrochimica Acta, 2021, 369, 137682.	2.6	32
14	Enhanced photocatalytic properties of α-SnWO4 nanosheets modified by Ag nanoparticles. Journal of Colloid and Interface Science, 2017, 490, 46-52.	5.0	31
15	Amino-functionalized MCM-41 for the simultaneous electrochemical determination of trace lead and cadmium. Electrochimica Acta, 2014, 144, 161-167.	2.6	30
16	Enhanced visible-light photocatalytic properties of g-C3N4 by coupling with ZnAl2O4. Catalysis Communications, 2016, 86, 86-90.	1.6	24
17	In situ decoration of SnS quantum dots on the α-SnWO4 nanosheets for superior visible-light photocatalytic performance. Applied Surface Science, 2020, 531, 147379.	3.1	24
18	Co-precipitation preparation, characterization and optical properties of blue CaSb2O6: Bi3+ nano-phosphor. Materials Letters, 2013, 102-103, 59-61.	1.3	22

Weifeng Li

#	Article	IF	CITATIONS
19	Preparation of α-SnWO 4 hierarchical spheres by Bi 3+ -doping and their enhanced photocatalytic activity under visible light. Ceramics International, 2016, 42, 14743-14748.	2.3	20
20	A voltammetric sensor for simultaneous determination of hydroquinone and catechol by using a heterojunction prepared from gold nanoparticle and graphitic carbon nitride. Mikrochimica Acta, 2019, 186, 819.	2.5	19
21	Solvent effect on morphological evolution and photocatalytic property of α-SnWO4. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 575-582.	2.7	19
22	Luminescent properties of Bi3+-activated Ca2Sb2O7 nano-phosphor prepared by co-precipitation method. Journal of Alloys and Compounds, 2015, 653, 345-350.	2.8	15
23	Enhanced luminescence of CaSb 2 O 6 :Bi 3+ blue phosphors by efficient charge compensation. Materials Science in Semiconductor Processing, 2016, 41, 265-269.	1.9	13
24	Effect of calcination temperature on the photocatalytic activity of CaSb2O6 nanoparticles prepared by co-precipitation method. Catalysis Communications, 2014, 48, 29-32.	1.6	12
25	Molten salt synthesis of BCNO nanosheets for the electrochemical detection of clenbuterol. Microchemical Journal, 2022, 178, 107359.	2.3	12
26	Defect-enhanced electrochemical property of h-BN for Pb2+ detection. Mikrochimica Acta, 2021, 188, 40.	2.5	9
27	Enhanced photocatalytic property of α-SnWO4 nanoplates by h-BN decorating. Journal of Materials Science: Materials in Electronics, 2021, 32, 21858-21868.	1.1	5
28	Effects of Cr doping on the optical characteristics of PbWO4 crystals. Journal of Luminescence, 2005, 113, 109-114.	1.5	4
29	Formation mechanism ofCr4+ions inPbWO4single crystals. Physical Review B, 2005, 71, .	1.1	4
30	Molten‣altâ€Assisted Synthesis of Na 3 Bi(PO 4) 2 :Eu 3+ Nanoparticles with Strong Red Emission. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800981.	0.8	4
31	Low-temperature molten salt process for the synthesis of NaBi7P2O16 nano-plates with excellent photocatalytic activity. Research on Chemical Intermediates, 2019, 45, 893-905.	1.3	4
32	Study on the photoluminescence of Cr ³⁺ and doping mechanism in F [–] codoped PbWO ₄ single crystal. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1584-1588.	0.8	2