Fabien Can

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6462008/publications.pdf Version: 2024-02-01

FARIEN CAN

#	Article	IF	CITATIONS
1	Competitive Adsorption of NOx and Ozone on the Catalyst Surface of Ozone Converters. Catalysts, 2022, 12, 738.	3.5	0
2	Tungsten-Based Catalysts for Environmental Applications. Catalysts, 2021, 11, 703.	3.5	49
3	Insight into the praseodymium effect on the NH3-SCR reaction pathways over W or Nb supported ceria-zirconia based catalysts. Applied Catalysis B: Environmental, 2021, 298, 120563.	20.2	17
4	Selective catalytic reduction of NO at low temperature using a (ethanol+ammonia) mixture over a Ag/Al2O3 + WO3/Cex-ZryO2 dual-bed catalytic system: Reactivity insight of WO3/Cex-ZryO2. Catalysis Today, 2020, 355, 375-384.	4.4	5
5	Influence of Na, P and (Na + P) poisoning on a model copper-ferrierite NH3-SCR catalyst. Applied Catalysis B: Environmental, 2019, 250, 355-368.	20.2	38
6	Influence of Sodium and/or Phosphorus Addition on the Deactivation of Cu-FER Zeolites for SCR of NOx with NH3. Topics in Catalysis, 2019, 62, 72-78.	2.8	5
7	Lean NOx Removal by a Bifunctional (EtOH + NH3) Mixture Dedicated to (Ag/Al2O3 + NH3-SCR Catalytic System: Comparison Between WO3/CeZrO2 and Cu–FER as NH3-SCR Catalyst. Topics in Catalysis, 2019, 62, 79-85.	2) Dual-Bec 2.8	2
8	FT-IR spectroscopy study of HNCO adsorption and hydrolysis over oxide-based samples dedicated to deNO x processes. Applied Catalysis A: General, 2018, 552, 147-153.	4.3	11
9	Biofuel Impact on Diesel Engine After-Treatment: Deactivation Mechanisms and Soot Reactivity. Emission Control Science and Technology, 2018, 4, 15-32.	1.5	16
10	Remarkable enhancement of the selective catalytic reduction of NO at low temperature by collaborative effect of ethanol and NH3 over silver supported catalyst. Applied Catalysis B: Environmental, 2018, 220, 19-30.	20.2	38
11	Transition metal oxides for combustion and depollution processes. , 2018, , 287-353.		6
12	Influence of the Sodium Impregnation Solvent on the Deactivation of Cu/FER-Exchanged Zeolites Dedicated to the SCR of NOx with NH3. Catalysts, 2018, 8, 3.	3.5	10
13	Palladium, Iridium, and Rhodium Supported Catalysts: Predictive H2 Chemisorption by Statistical Cuboctahedron Clusters Model. Materials, 2018, 11, 819.	2.9	14
14	Enhancement of Oxygen Activation and Mobility in CaTi _{<i>x</i>} Fe _{1â~<i>x</i>} O _{3â^<i>i^<i>i^</i></i>} O _{3â^2<i>î<</i>} Oxides. ChemCatChem, 2017, 9, 2095-2098.	3.7	9
15	Study of the remarkable reactivity of HNCO/urea with NO ₂ in the NO _x SCR by urea process over an oxide-based catalyst. Catalysis Science and Technology, 2017, 7, 5457-5465.	4.1	4
16	Investigation of Methane Oxidation Reactions Over a Dualâ€Bed Catalyst System using ¹⁸ 0 Labelled DRIFTS coupling. ChemSusChem, 2017, 10, 210-219.	6.8	13
17	Study of Lanthanum Manganate and Yttriumâ€Stabilized Zirconiaâ€Supported Palladium Dualâ€Bed Catalyst System for the Total Oxidation of Methane: A Study by ¹⁸ O ₂ 16O ₂ Isotopic Exchange. ChemCatChem, 2016, 8, 1921-1928.	3.7	9
18	Direct Comparison of Urea-SCR and NH3-SCR Activities Over Acidic Oxide and Exchanged Zeolite Prototype Powdered Catalysts. Topics in Catalysis, 2016, 59, 938-944.	2.8	13

FABIEN CAN

#	Article	IF	CITATIONS
19	NOx Selective Catalytic Reduction (NO _{<i>x</i>} -SCR) by Urea: Evidence of the Reactivity of HNCO, Including a Specific Reaction Pathway for NOx Reduction Involving NO + NO ₂ . ACS Catalysis, 2016, 6, 4064-4067.	11.2	54
20	Platinum Supported Catalysts: Predictive CO and H ₂ Chemisorption by a Statistical Cuboctahedron Cluster Model. Journal of Physical Chemistry C, 2016, 120, 26374-26385.	3.1	27
21	Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion. Applied Catalysis B: Environmental, 2016, 180, 29-37.	20.2	77
22	Use of a Âμ-Scale Synthetic Gas Bench for Direct Comparison of Urea-SCR and NH3-SCR Reactions over an Oxide Based Powdered Catalyst. Catalysts, 2015, 5, 1535-1553.	3.5	10
23	The role of preparation route upon the ambient pressure ammonia synthesis activity of Ni2Mo3N. Applied Catalysis A: General, 2015, 504, 44-50.	4.3	38
24	Adsorption and Desorption of a Model Hydrocarbon Mixture Over HY Zeolite Under Dry and Wet Conditions. Journal of Physical Chemistry C, 2015, 119, 315-331.	3.1	48
25	The influence of pre-treatment gas mixture upon the ammonia synthesis activity of Co–Re catalysts. Catalysis Communications, 2015, 68, 53-57.	3.3	22
26	Composition dependent performance of alumina-based oxide supported WO3 catalysts for the NH3-SCR reaction and the NSR+SCR coupled process. Catalysis Today, 2015, 257, 41-50.	4.4	17
27	From the powder to the honeycomb. A comparative study of the NSR efficiency and selectivity over Pt–CeZr based active phase. Catalysis Today, 2015, 241, 125-132.	4.4	7
28	Remarkable Enhancement of O ₂ Activation on Yttriumâ€ s tabilized Zirconia Surface in a Dual Catalyst Bed. Angewandte Chemie - International Edition, 2014, 53, 11342-11345.	13.8	25
29	Effect of reducing agent (C3H6, CO, H2) on the NOx conversion and selectivity during representative lean/rich cycles over monometallic platinum-based NSR catalysts. Influence of the support formulation. Applied Catalysis B: Environmental, 2014, 146, 12-23.	20.2	29
30	Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality. Chemical Reviews, 2014, 114, 10292-10368.	47.7	685
31	Evolution of unburnt hydrocarbons under "cold-start―conditions from adsorption/desorption to conversion: On the screening of zeolitic materials. Applied Catalysis B: Environmental, 2014, 158-159, 48-59.	20.2	47
32	NSR–SCR Combined Systems: Production and Use of Ammonia. Fundamental and Applied Catalysis, 2014, , 587-622.	0.9	1
33	A Study of the NOx Selective Catalytic Reduction with Ethanol and Its By-products. Topics in Catalysis, 2013, 56, 94-103.	2.8	15
34	Composition-Dependent Performance of Ce _{<i>x</i>/sub>Zr_{1–<i>x</i>/sub>O₂ Mixed-Oxide-Supported WO₃ Catalysts for the NO_{<i>x</i>/sub> Storage Reduction–Selective Catalytic Reduction Coupled Process. ACS Catalysis. 2013. 3. 1120-1132.}}}	11.2	74
35	Ionic Liquidâ€Mediated αâ€Fe ₂ O ₃ Shapeâ€Controlled Nanocrystalâ€Supported Noble Metals: Highly Active Materials for CO Oxidation. ChemCatChem, 2013, 5, 1978-1988.	3.7	13
36	An overview of the production and use of ammonia in NSR+SCR coupled system for NOx reduction from lean exhaust gas. Catalysis Today, 2012, 197, 144-154.	4.4	62

Fabien Can

#	Article	IF	CITATIONS
37	Understanding the role of C3H6, CO and H2 on efficiency and selectivity of NOx storage reduction (NSR) process. Catalysis Today, 2012, 189, 70-76.	4.4	19
38	High-surface-area zinc aluminate supported silver catalysts for low-temperature SCR of NO with ethanol. Applied Catalysis B: Environmental, 2012, 126, 275-289.	20.2	45
39	Waste-free scale up synthesis of nanocrystalline hexaaluminate: properties in oxygen transfer and oxidation reactions. CrystEngComm, 2012, 14, 7733.	2.6	13
40	Infrared investigation on surface properties of alumina obtained using recent templating routes. Microporous and Mesoporous Materials, 2012, 158, 88-98.	4.4	22
41	A study of the ammonia selectivity on Pt/BaO/Al2O3 model catalyst during the NOx storage and reduction process. Catalysis Today, 2011, 176, 424-428.	4.4	15
42	Role of the alumina surface properties on the ammonia production during the NOx SCR with ethanol over Ag/Al2O3 catalysts. Catalysis Today, 2011, 164, 474-479.	4.4	12
43	NOx removal efficiency and ammonia selectivity during the NOx storage-reduction process over Pt/BaO(Fe, Mn, Ce)/Al2O3 model catalysts. Part I: Influence of Fe and Mn addition. Applied Catalysis B: Environmental, 2011, 102, 353-361.	20.2	36
44	NOx removal efficiency and ammonia selectivity during the NOx storage-reduction process over Pt/BaO(Fe, Mn, Ce)/Al2O3 model catalysts. Part II: Influence of Ce and Mn–Ce addition. Applied Catalysis B: Environmental, 2011, 102, 362-371.	20.2	36
45	Synthesis and characterization of high surface area TiO2/SiO2 mesostructured nanocomposite. Solid State Sciences, 2010, 12, 1002-1012.	3.2	23
46	Preparation and characterization of bimetallic Rh-Ni/Y2O3-Al2O3 for hydrogen production by raw bioethanol steam reforming: influence of the addition of nickel on the catalyst performances and stability. Applied Catalysis B: Environmental, 2010, 97, 72-81.	20.2	70
47	Hydrogen production from raw bioethanol steam reforming: Optimization of catalyst composition with improved stability against various impurities. International Journal of Hydrogen Energy, 2010, 35, 5015-5020.	7.1	64
48	Surface properties and thermal stability of SiO2-crystalline TiO2 nano-composites. Journal of Materials Chemistry, 2010, 20, 9205.	6.7	26
49	Influence of Mn and Fe Addition on the NO x Storage–Reduction Properties and SO2 Poisoning of a Pt/Ba/Al2O3 Model Catalyst. Topics in Catalysis, 2009, 52, 1771-1775.	2.8	11
50	NOx storage and reduction properties of Pt/CexZr1â^'xO2 mixed oxides: Sulfur resistance and regeneration, and ammonia formation. Applied Catalysis B: Environmental, 2009, 93, 12-21.	20.2	51
51	NOx storage properties of Pt/Ba/Al model catalysts prepared by different methods. Applied Catalysis B: Environmental, 2008, 84, 514-523.	20.2	21
52	New Active and Selective Rhâ^'REOxâ^'Al2O3 Catalysts for Ethanol Steam Reforming. Journal of Physical Chemistry C, 2008, 112, 14145-14153.	3.1	47
53	Lanthanum oxides for the selective synthesis of phytosterol esters: Correlation between catalytic and acid–base properties. Journal of Catalysis, 2007, 251, 113-122.	6.2	93
54	FCC gasoline sulfur reduction additives: Mechanism and active sites. Journal of Catalysis, 2007, 249, 79-92.	6.2	41

#	Article	IF	CITATIONS
55	FTIR study of unsupported molybdenum sulfide?in situ synthesis and surface properties characterization. Applied Catalysis A: General, 2004, 268, 189-197.	4.3	43
56	IR Study of the Adsorption and Isotopic Scrambling of Thiophene on CaO. Journal of Physical Chemistry B, 2003, 107, 8578-8587.	2.6	10