
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6461922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of polarization-related band modulation at graphene/Mn-doped BiFeO ₃ interfaces by photoemission electron microscopy. Japanese Journal of Applied Physics, 2022, 61, SN1004.	0.8	1
2	Impact of film thickness on the external quantum efficiency of bulk photovoltaic effects in Mn-doped BiFeO ₃ thin films. Japanese Journal of Applied Physics, 2021, 60, SFFB02.	0.8	7
3	Effects of post-annealing temperature and micropillar shape on physical properties of micropillar-type multiferroic composite thin films. Japanese Journal of Applied Physics, 2021, 60, SFFB06.	0.8	0
4	Nonvolatile operation of vertical ferroelectric gate-all-around nanowire transistors. Japanese Journal of Applied Physics, 2021, 60, SFFB10.	0.8	3
5	Atomic structure stabilization in BiFeO ₃ thin film by Mn doping. Japanese Journal of Applied Physics, 2020, 59, 010602.	0.8	6
6	X-ray absorption and photoemission spectroscopy of bulk insulating materials using graphene. Journal of Applied Physics, 2020, 128, .	1.1	4
7	Enhancement of photovoltage by electronic structure evolution in multiferroic Mn-doped BiFeO3 thin films. Scientific Reports, 2020, 10, 15108.	1.6	13
8	Water Electrolysis Using Thin Pt and RuO _{<i>x</i>} Catalysts Deposited by a Flame-Annealing Method on Pencil-Lead Graphite-Rod Electrodes. ACS Omega, 2020, 5, 6090-6099.	1.6	8
9	Fabrication and characterization of micropillar-type multiferroic composite thin films by metal organic chemical vapor deposition using a ferroelectric microplate structure. Japanese Journal of Applied Physics, 2020, 59, SCCB10.	0.8	5
10	Effects of substrate temperature on physical properties of microrod-type multiferroic composite thin films fabricated by metal organic chemical vapor deposition. Japanese Journal of Applied Physics, 2020, 59, SPPB08.	0.8	0
11	Fabrication and physical properties of bismuth layer-structured ferroelectric thin films with c-axis orientation epitaxially grown by high-temperature sputtering. Japanese Journal of Applied Physics, 2019, 58, SLLB09.	0.8	4
12	Introduction of charged domain walls into BiFeO3 thin films using a pit-patterned SrTiO3 (001) substrate. Japanese Journal of Applied Physics, 2019, 58, SLLB02.	0.8	1
13	Composition control and introduction of an Fe2O3 seed layer in metalorganic chemical vapor deposition of epitaxial BiFeO3 thin films. Japanese Journal of Applied Physics, 2019, 58, 041003.	0.8	6
14	Bulk photovoltaic effects in Mn-doped BiFeO ₃ thin films and the optical strains. Japanese Journal of Applied Physics, 2018, 57, 11UF11.	0.8	8
15	Electric-field-induced lattice distortion in epitaxial BiFeO3 thin films as determined by <i>in situ</i> time-resolved x-ray diffraction. Applied Physics Letters, 2017, 111, .	1.5	3
16	Fabrication of ZnO/HfO <inf>2</inf> /ZnO nanowire capacitors by MOCVD. , 2017, , .		0
17	Self-regulation of Bi/(Bi+Fe) ratio in metalorganic chemical vapor deposition of BiFeO ₃ thin films. Japanese Journal of Applied Physics, 2017, 56, 10PF05.	0.8	4
18	Domain structure of BiFeO3thin films grown on patterned SrTiO3(001) substrates. Japanese Journal of Applied Physics, 2017, 56, 10PF17.	0.8	1

#	Article	IF	CITATIONS
19	Fabrication and leakage current and ferroelectric characteristics of multiferroic Fe ₃ O ₄ /(Bi _{3.25} Nd _{0.65} Eu _{0.10})Ti ₃ C thin films with Fe ₃ O ₄ magnetic electrodes micropatterned by reactive ion etching. Japanese Journal of Applied Physics, 2017, 56, 10PF02.) ₁₂	comp
20	Light stability tests of CH ₃ NH ₃ PbI ₃ perovskite solar cells using porous carbon counter electrodes. Physical Chemistry Chemical Physics, 2016, 18, 27102-27108.	1.3	39
21	ZnO/(Hf,Zr)O2/ZnO-trilayered nanowire capacitor structure fabricated solely by metalorganic chemical vapor deposition. Japanese Journal of Applied Physics, 2016, 55, 02BC08.	0.8	1
22	Growth of epitaxial Mn and Zn codoped BiFeO ₃ thin films and an enhancement of photovoltage generated by a bulk photovoltaic effect. Japanese Journal of Applied Physics, 2016, 55, 10TA07.	0.8	10
23	Magnetic and structural characteristics of multiferroic Fe3O4/(Bi3.25Nd0.65Eu0.10)Ti3O12composite thin films deposited by metalorganic chemical vapor deposition. Japanese Journal of Applied Physics, 2016, 55, 10TA01.	0.8	11
24	Strain evolution of epitaxial tetragonal-like BiFeO3thin films on LaAlO3(001) substrates prepared by sputtering and their bulk photovoltaic effect. Japanese Journal of Applied Physics, 2016, 55, 101501.	0.8	15
25	Effects of sputtering gas pressure on physical properties of ferroelectric (Bi3.25Nd0.65Eu0.10)Ti3O12nanoplate films. Japanese Journal of Applied Physics, 2015, 54, 10NA01.	0.8	9
26	Introduction of an artificial domain wall into BiFeO3thin film using SrTiO3bicrystal substrate. Japanese Journal of Applied Physics, 2015, 54, 10NA06.	0.8	4
27	Anomalous photovoltaic effects in Pt/single-domain-structured BiFeO ₃ /Pt coplanar capacitors on SrTiO ₃ substrates. Japanese Journal of Applied Physics, 2015, 54, 10NA16.	0.8	16
28	Influence of the polarization direction of light on the anomalous photovoltaic effect in BiFeO3 thin films. Journal of the Korean Physical Society, 2015, 66, 1389-1393.	0.3	7
29	Thicknesses of domain walls in rhombohedral BiFeO ₃ thin films evaluated by scanning nonlinear dielectric microscopy. Japanese Journal of Applied Physics, 2014, 53, 09PA13.	0.8	10
30	Current conduction in single-domain BiFeO ₃ thin films. Japanese Journal of Applied Physics, 2014, 53, 08NA01.	0.8	2
31	Bulk photovoltaic effect in a BiFeO ₃ thin film on a SrTiO ₃ substrate. Japanese Journal of Applied Physics, 2014, 53, 09PA16.	0.8	32
32	Growth and local structure of BiFeO3thin films with giant tetragonality on SrRuO3-buffered SrTiO3(001) substrate by ion beam sputtering. Japanese Journal of Applied Physics, 2014, 53, 05FE05.	0.8	5
33	Lattice distortions and piezoelectric properties in (Bi3.25Nd0.75â^'xEux)Ti3O12nanoplates witha- andb-axis orientations. Japanese Journal of Applied Physics, 2014, 53, 02BC07.	0.8	6
34	Effects of deposition temperature on characteristics of ferroelectric Sr ₂ Bi ₄ Ti ₅ O ₁₈ nanoplates fabricated by RF sputtering. Japanese Journal of Applied Physics, 2014, 53, 09PA02.	0.8	3
35	Two-step growth of ZnO nanorods by using MOCVD and control of their diameters and surface densities. Journal of the Korean Physical Society, 2013, 62, 1164-1168.	0.3	8
36	Fabrication of inorganic-organic composites containing ferroelectric nanoplates and evaluation of their piezoelectric response characteristics. Journal of the Korean Physical Society, 2013, 62, 999-1003.	0.3	3

#	Article	IF	CITATIONS
37	Influence of Lattice Distortion Induced by a Vicinal SrTiO3(001) Substrate in Single-Domain BiFeO3Thin Films Prepared by Radio Frequency Planar Magnetron Sputtering. Japanese Journal of Applied Physics, 2013, 52, 09KB03.	0.8	11
38	Nonlocality in spherical-aberration-corrected HAADF STEM images. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, 289-296.	0.3	5
39	Effects of Eu3+Doping on Characteristics of (Bi3.25Nd0.75)Ti3O12Nanoplates. Japanese Journal of Applied Physics, 2013, 52, 09KA10.	0.8	7
40	Synchrotron radiation analyses of lattice strain behaviors for rhombohedral Pb(Zn _{1/3} Nb _{2/3})O ₃ –PbTiO _{3 single crystals under electric fields. Journal of the Ceramic Society of Japan, 2013, 121, 632-637.}	\$< c/.s ub&{	gt;6
41	Switching Current Measurements of Self-Assembled Ferroelectric PbTiO\$_{3}\$ Nanoislands Using Scanning Probe Microscopy. Japanese Journal of Applied Physics, 2012, 51, 021501.	0.8	3
42	Size Dependence of Ferroelectric Polarization in PbTiO\$_{3}\$ Nanoislands. Japanese Journal of Applied Physics, 2012, 51, 09LA07.	0.8	5
43	Preparation and Characterization of High Quality Lead-free BiFeO3 Thin Films by Sputtering Process. , 2012, , .		2
44	Structural and Ferroelectric Properties of Domain-Structure-Controlled BiFeO\$_{3}\$ Thin Films Prepared by Dual-Ion-Beam Sputtering. Japanese Journal of Applied Physics, 2012, 51, 09LB02.	0.8	3
45	Fabrication of PZT/ZnO Core-Shell Nanowires by Metalorganic Chemical Vapor Deposition. , 2012, , .		1
46	Selective growth of ZnO nanorods and their applications to ferroelectric nanorods. Journal of Applied Physics, 2012, 112, 034111.	1.1	12
47	Structural and Ferroelectric Properties of Domain-Structure-Controlled BiFeO3Thin Films Prepared by Dual-Ion-Beam Sputtering. Japanese Journal of Applied Physics, 2012, 51, 09LB02.	0.8	7
48	Switching Current Measurements of Self-Assembled Ferroelectric PbTiO3Nanoislands Using Scanning Probe Microscopy. Japanese Journal of Applied Physics, 2012, 51, 021501.	0.8	0
49	Size Dependence of Ferroelectric Polarization in PbTiO ₃ Nanoislands. Japanese Journal of Applied Physics, 2012, 51, 09LA07.	0.8	1
50	Characterization of epitaxial BiFeO3 thin films prepared by ion beam sputtering. Current Applied Physics, 2011, 11, S244-S246.	1.1	8
51	Preparation of BiFeO\$_{3}\$ Thin Films on SrRuO\$_{3}\$/SrTiO\$_{3}\$(001) Substrate by Dual Ion Beam Sputtering. Japanese Journal of Applied Physics, 2011, 50, 09NB01.	0.8	12
52	Growth of high quality BiFeO <inf>3</inf> thin films by dual ion beam sputtering. , 2011, , .		2
53	Ferro- and piezoelectric properties of (Bi <inf>3.25</inf> Nd <inf>0.75</inf>)Ti <inf>3</inf> O <inf>12</inf> nanoplates epitaxially grown on Nb:TiO <inf>2</inf> (101) substrates by sputtering. , 2011, , .		1
54	Structural and Ferroelectric Properties of Large c/a Phase Bismuth Ferrite Thin Films Prepared by Ion Beam Sputtering. Materials Research Society Symposia Proceedings, 2011, 1292, 3.	0.1	0

#	Article	IF	CITATIONS
55	Crystalline Orientation of PbTiO3 Nanorods Grown by MOCVD Using ZnO Nanorods as a Template. Materials Research Society Symposia Proceedings, 2011, 1292, 137.	0.1	4
56	X-ray Diffraction Study of Electric-field-induced Strains in Polycrystalline BiFeO3 Thin Films at Low Temperature Using Synchrotron Radiation. Journal of the Korean Physical Society, 2011, 59, 2556-2559.	0.3	4
57	Preparation of BiFeO3Thin Films on SrRuO3/SrTiO3(001) Substrate by Dual Ion Beam Sputtering. Japanese Journal of Applied Physics, 2011, 50, 09NB01.	0.8	2
58	Structural Characteristics of Epitaxially a- and b-axis-oriented (Bi3.25Nd0.75)Ti3O12 Films Fabricated on Conductive Nb:TiO2 Substrates by High-temperature Sputtering. Journal of the Korean Physical Society, 2011, 59, 2528-2531.	0.3	0
59	PbTiO3 thin films grown on Pt-covered vicinal SrTiO3(001) substrates. Journal of the Korean Physical Society, 2011, 59, 2560-2564.	0.3	1
60	Structural and ferroelectric properties of epitaxial Bi5Ti3FeO15 and natural-superlattice-structured Bi4Ti3O12–Bi5Ti3FeO15 thin films. Journal of Applied Physics, 2010, 108, .	1.1	42
61	Crystal Growth and Structural Characteristics of Preferentially <i>a-</i> and <i>b-</i> Axis <i>-</i> Oriented (Bi _{4-<i>x</i>} Nd <i>_x</i>)Ti ₃ O ₁₂ Films Fabricated by High <i>-</i> Temperature Sputtering, Ferroelectrics, 2010, 406, 155-160.	0.3	Ο
62	Characterization of (Bi _{3.25} Nd _{0.75})Ti ₃ O ₁₂ Thin Films with a- and b-Axis Orientations Deposited on Nb:TiO ₂ Substrates by High-Temperature Sputtering. Japanese Journal of Applied Physics, 2010, 49, 09MA03.	0.8	16
63	Synthesis of PbTiO3Nanotubes by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2009, 48, 09KA05.	0.8	21
64	Fabrication and Characterization of Nd-Substituted Bi4Ti3O12Thin Films witha- andb-Axis Orientations by High-Temperature Sputtering. Japanese Journal of Applied Physics, 2009, 48, 09KA09.	0.8	9
65	PbTiO3- and Pb(Zr,Ti)O3-Covered ZnO Nanorods. Applied Physics Express, 2009, 2, 055003.	1.1	21
66	Leakage Current of PLD- and CSD-BiFeO3 Thin Films Observed by Current Sensitive AFM. Materials Research Society Symposia Proceedings, 2009, 1199, 120.	0.1	0
67	Ferroelectric and structural properties of stress-constrained and stress-relaxed polycrystalline BiFeO3 thin films. Journal of Applied Physics, 2009, 105, 061617.	1.1	20
68	Size Dependence of Ferroelectric Properties of Epitaxial PbTiO ₃ Nanoislands on Pt/SrTiO ₃ (100). Transactions of the Materials Research Society of Japan, 2009, 34, 23-26.	0.2	1
69	Epitaxial Growth and Ferroelectric Properties of PbTiO ₃ Nanoislands and Thin Films Grown on Single-Crystalline Pt Films. Japanese Journal of Applied Physics, 2008, 47, 7505.	0.8	24
70	Multiferroism at Room Temperature in BiFeO3/BiCrO3(111) Artificial Superlattices. Applied Physics Express, 2008, 1, 101302.	1.1	33
71	Epitaxial Growth and Ferroelectric Properties of PbTiO3 Thin Films on Coherently Grown Pt Bottom Electrodes. Transactions of the Materials Research Society of Japan, 2008, 33, 23-26.	0.2	1
72	Fabrication of PbTiO3 Nanoislands by MOCVD and their Ferroelectricity. Nihon Kessho Gakkaishi, 2008, 50, 276-281.	0.0	0

#	Article	IF	CITATIONS
73	Growth of Perovskite (Bi,Ln)(Ni0.5Ti0.5)O3Thin Films by RF Magnetron Sputtering. Japanese Journal of Applied Physics, 2007, 46, 6938-6943.	0.8	5
74	Growth of ferroelectric bismuth lanthanum nickel titanate thin films by rf magnetron sputtering. Journal of Applied Physics, 2007, 101, 074110.	1.1	5
75	Stress Dependence of Crystal Structure of Polycrystalline BiFeO3 Thin Films on Membrane Structure Prepared by Pulsed Laser Deposition. Materials Research Society Symposia Proceedings, 2007, 1034, 37.	0.1	Ο
76	Ferroelectric Properties and Memory Characteristics of Epitaxial Pb(Zr _{0.3} Ti _{0.7})O ₃ Thin Films with Different Thicknesses Crystallized by Hot Isostatic Pressing. Ferroelectrics, 2007, 357, 264-270.	0.3	1
77	Epitaxial growth of Pt and Ir thin films on a SrTiO <inf>3</inf> (001) substrate. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	Ο
78	Preparation of Ir-Based Electrode Thin Films by Liquid-Delivery MOCVD. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	0
79	Quantitative Analysis of Atomic Resolution HAADF-STEM (Z-contrast) Imaging for PbTiO3 / SrTiO3 Substrate Dielectric Thin Films. Microscopy and Microanalysis, 2006, 12, 1352-1353.	0.2	2
80	Fabrication of Ir-Based Electrodes by Metal Organic Chemical Vapor Deposition Using Liquid Ir Precursors. Japanese Journal of Applied Physics, 2006, 45, 7354-7359.	0.8	7
81	Fabrication of Self-Assembled Au Nanodots and Their Applications to Ferroelectric Nanocapacitors. Japanese Journal of Applied Physics, 2006, 45, 7262-7264.	0.8	8
82	LOW TEMPERATURE CRYSTALLIZATION OF Pb(Zr,Ti)O3 AND PbTiO3 MOCVD THIN FILM BY HYDROTHERMAL TREATMENT AT 240°C. Integrated Ferroelectrics, 2006, 84, 137-146.	0.3	1
83	A Novel Iridium Precursor for MOCVD. ECS Transactions, 2006, 1, 133-138.	0.3	10
84	Preparation of PbZrxTi1â^'xO3 nanostructures on various substrates by MOCVD. Journal of Crystal Growth, 2005, 275, e2433-e2438.	0.7	3
85	A Novel Iridium Precursor for MOCVD. ECS Meeting Abstracts, 2005, , .	0.0	0
86	Piezo- and Ferroelectric Properties of Self-Assembled PbTiO3Nanoisland Structures Fabricated by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2005, 44, 6891-6894.	0.8	9
87	Ferroelectricity and local currents in epitaxial 5- and 9-nm-thick Pb(Zr,Ti)O3 ultrathin films by scanning probe microscopy. Applied Physics Letters, 2005, 86, 012903.	1.5	15
88	Structural control of self-assembled PbTiO3 nanoislands fabricated by metalorganic chemical vapor deposition. Applied Physics Letters, 2005, 86, 163106.	1.5	42
89	Microstructure and ferroelectric properties of ultrathin PbTiO3 films by MOCVD. Materials Research Society Symposia Proceedings, 2005, 902, 1.	0.1	0
90	Microstructures of Self-Assembled PbTiO3Nanoislands Prepared by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2004, 43, 6539-6542.	0.8	9

#	Article	IF	CITATIONS
91	Piezoresponse Force Microscopy Observations of Switching Behavior in Pb(Zr,Ti)O3Capacitors. Japanese Journal of Applied Physics, 2004, 43, 6571-6575.	0.8	9
92	Nanoscale Investigation of MOCVD- Pb(Zr,Ti)O3 Thin Films Using Scanning Probe Microscopy. , 2004, , 219-238.		0
93	Ferroelectric Properties and Memory Characteristics of Pb(Zr0.52 Ti0.48)O3 Thin Films Crystallized by Hot Isostatic Pressing. Integrated Ferroelectrics, 2004, 64, 145-155.	0.3	0
94	Self-Assembled PbTiO3Nanoislands Prepared by MOCVD. Integrated Ferroelectrics, 2004, 62, 109-113.	0.3	6
95	Fabrication of Planar and Three-Dimensional PZT Capacitors with Ir-Based Electrodes Solely by Low-Temperature MOCVD Using a Novel Liquid Ir Precursor. Integrated Ferroelectrics, 2004, 68, 85-94.	0.3	13
96	Ferroelectric properties of Pb(Zr,Ti)O3 thin films prepared by low-temperature MOCVD using PbTiO3 seeds. Journal of the European Ceramic Society, 2004, 24, 1625-1628.	2.8	22
97	Ferroelectricity of the 1.7 nm-high and 38 nm-wide self-assembled PbTiO3 island. Journal of the European Ceramic Society, 2004, 24, 1641-1645.	2.8	36
98	Ferroelectric and Piezoelectric Properties of 0.24Pb(Zn1/3Nb2/3)O3ċ0.384PbZrO3ċ0.376PbTiO3 Thin Films Crystallized by Hot Isostatic Pressing. Integrated Ferroelectrics, 2004, 63, 105-108.	0.3	2
99	Self-Assembled PbTiO3Nano-Islands Prepared on SrTiO3by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2003, 42, 5918-5921.	0.8	33
100	Ir Thin Films for PZT Capacitors Prepared by MOCVD Using a New Ir Precursor. Materials Research Society Symposia Proceedings, 2003, 784, 11371.	0.1	3
101	A Novel Iridium Precursor for MOCVD. Materials Research Society Symposia Proceedings, 2003, 784, 3301.	0.1	6
102	Natural-superlattice-structured Bi4Ti3O12–SrBi4Ti4O15 ferroelectric thin films. Applied Physics Letters, 2003, 82, 784-786.	1.5	29
103	Low Temperature Growth of Pb(Zr,Ti)O 3 Thin Films by Two Step MOCVD Using Seeds. Ferroelectrics, 2002, 271, 217-222.	0.3	2
104	Investigation of Polarization Switching Processes in Pb(Zr,Ti)O 3 Capacitors Using Piezoresponse Imaging. Ferroelectrics, 2002, 269, 21-26.	0.3	9
105	Effects of Introduction of Initial Nuclei on Physical Properties of (Pb,La)(Zr,Ti)O 3 Films Crystallized from Amorphous State. Ferroelectrics, 2002, 271, 199-204.	0.3	2
106	Thermal Stability of SrRuO3Bottom Electrode and Electric Property of Pb(Zr, Ti)O3Thin Film Deposited on SrRuO3. Japanese Journal of Applied Physics, 2002, 41, 6873-6876.	0.8	14
107	Crystalline and Ferroelectric Properties of Pb(Zr, Ti)O3Thin Films Grown by Low-Temperature Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2002, 41, 6686-6689.	0.8	20
108	Epitaxial Growth and Ferroelectric Properties of the 20-nm-Thick Pb(Zr, Ti)O3Film on SrTiO3(100) with an Atomically Flat Surface by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2002, 41, 6682-6685.	0.8	19

#	Article	IF	CITATIONS
109	Effect of Strain in Epitaxially Grown SrRuO3Thin Films on Crystal Structure and Electric Properties. Japanese Journal of Applied Physics, 2002, 41, 5376-5380.	0.8	45
110	Investigation of Domain Wall Velocity and Nucleation Rate in Polarization Switching of Epitaxial Pb(Zr,Ti)O ₃ Thin Films Using Piezoresponse Scanning Force Microscopy. Materials Research Society Symposia Proceedings, 2002, 748, 1.	0.1	1
111	Ferroelectric Properties of 15–20nm-Thick PZT Ultrathin Films Prepared by MOCVD. Materials Research Society Symposia Proceedings, 2002, 748, 1.	0.1	1
112	Semiconductor Electronics. Observations of Polarization Switching Processes in Ferroelectric Pb(Zr,Ti)O3 Thin Films Using Piezoresponse Scanning Force Microscopy Zairyo/Journal of the Society of Materials Science, Japan, 2002, 51, 975-978.	0.1	1
113	Growth of ferroelectric PbZrxTi1â^'xO3 thin films by metalorganic chemical vapor deposition (MOCVD). Journal of Crystal Growth, 2002, 237-239, 448-454.	0.7	26
114	Observations of initial growth stage of epitaxial Pb(Zr,Ti)O3 thin films on SrTiO3(100) substrate by MOCVD. Journal of Crystal Growth, 2002, 237-239, 459-463.	0.7	7
115	Low-Temperature Fabrication of Ir/Pb(Zr,Ti)O3/Ir Capacitors Solely by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2001, 40, 5551-5553.	0.8	51
116	Microstructure and Electrical Properties of (Pb, La)(Zr, Ti)O3Films Crystallized from Amorphous State by Two-Step Postdeposition Annealing. Japanese Journal of Applied Physics, 2001, 40, 5554-5558.	0.8	3
117	MOCVD of Ir and IrO ₂ Thin Films for PZT Capacitors. Materials Research Society Symposia Proceedings, 2000, 655, 211.	0.1	6
118	Piezoresponse Measurements for Pb(Zr,Ti)O ₃ Island Structure Using Scanning Probe Microscopy. Materials Research Society Symposia Proceedings, 2000, 655, 60.	0.1	10
119	Observations of Island Structures at the Initial Growth Stage of PbZrxTi1-xO3Thin Films Prepared by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2000, 39, 5446-5450.	0.8	39
120	Effects of Pt/SrRuO3Top Electrodes on Ferroelectric Properties of Epitaxial (Pb, La)(Zr, Ti)O3Thin Films. Japanese Journal of Applied Physics, 2000, 39, 5451-5455.	0.8	22
121	Effects of film thickness and grain size on the electrical properties of Pb(Zr,Ti)O3thin films prepared by MOCVD. Ferroelectrics, 2000, 241, 183-190.	0.3	7
122	Size Effects of Epitaxial and Polycrystalline Pb(Zr, Ti)O3Thin Films Grown by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1999, 38, 5392-5396.	0.8	61
123	Thickness Dependence and Electrical Properties of Ultrathin PZT Films Grown on SrRuO ₃ /SrTiO ₃ by MOCVD. Materials Research Society Symposia Proceedings, 1999, 596, 259.	0.1	8
124	Observations of Domain Structure at Initial Growth Stage of PbTiO ₃ Thin Films Grown by Mocvd. Materials Research Society Symposia Proceedings, 1999, 596, 321.	0.1	10
125	Electrical properties of PZT thin films grown on Ir/IrO2 bottom electrodes by MOCVD. Integrated Ferroelectrics, 1998, 21, 107-114.	0.3	18
126	Influence of the Purity of Source Precursors on the Electrical Properties of Pb(Zr, Ti)O3Thin Films Prepared by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1998, 37, 5132-5136.	0.8	11

#	Article	IF	CITATIONS
127	Effects of the Purity of Metalorganic Sources on the Electrical Properties of Pb(ZrTi)O3 Thin Films by MOCVD. Materials Research Society Symposia Proceedings, 1998, 541, 411.	0.1	0
128	Control of Grain Size of Pb(Zr,Ti)O3 Thin Films by MOCVD and the Effect of Size on the Electrical Properties. Materials Research Society Symposia Proceedings, 1998, 541, 327.	0.1	2
129	Step Coverage Characteristics ofPb(Zr,Ti)O3Thin Films on Various Electrode Materials by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1997, 36, 5808-5811.	0.8	27
130	Characterization of Pb(Zr,Ti)O3 thin films by MOCVD using the total reflection X-ray diffraction method. Integrated Ferroelectrics, 1997, 15, 1-8.	0.3	3
131	Investigation of the current path of Pb(Zr,Ti)O3 thin films using an atomic force microscope with simultaneous current measurement. Applied Physics Letters, 1997, 71, 416-418.	1.5	37
132	Simultaneous observation of the surface topography and current flow of PZT thin films using an atomic force microscope. Integrated Ferroelectrics, 1997, 18, 71-78.	0.3	5
133	Effects of Sputtered Ir and IrO2 Electrodes on the Properties of PZT Thin Films Deposited By MOCVD. Materials Research Society Symposia Proceedings, 1997, 493, 159.	0.1	9
134	Effects of La and Nb modification on the electrical properties of Pb(Zr, Ti)O3 thin films by MOCVD. Integrated Ferroelectrics, 1997, 14, 69-75.	0.3	14
135	MOCVD of Pb-based ferroelectric oxide thin films. Journal of Crystal Growth, 1997, 174, 464-472.	0.7	23
136	Step Coverage of Pb(ZrTi)O3 Thin Films Grown by Mocvd. Materials Research Society Symposia Proceedings, 1996, 433, 201.	0.1	4
137	Dependence of Crystalline Structure and Lattice Parameters on Film Thickness inPbTiO3/Pt/MgO Epitaxial Structure. Japanese Journal of Applied Physics, 1996, 35, 4913-4918.	0.8	20
138	MOCVD of ferroelectric PLZT thin films and their properties. Microelectronic Engineering, 1995, 29, 173-176.	1.1	14
139	Preparation of PZT thin films by MOCVD using a new Pb precursor. Integrated Ferroelectrics, 1995, 6, 155-164.	0.3	30
140	Properties of ferroelectric (Pb,La) (Zr,Ti)O3 thin films by MOCVD. Integrated Ferroelectrics, 1995, 10, 23-30.	0.3	3
141	Effects ofO3on Growth and Electrical Properties ofPb(Zr,Ti)O3Thin Films by Photoenhanced Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1994, 33, 5135-5138.	0.8	29
142	Control of Orientation ofPb(Zr,Ti)O3Thin Films UsingPbTiO3Buffer Layer. Japanese Journal of Applied Physics, 1994, 33, 5167-5171.	0.8	95
143	Effects of the utilization of a buffer layer on the growth of Pb(Zr, Ti)O3 thin films by metalorganic chemical vapor deposition. Journal of Crystal Growth, 1994, 145, 226-231.	0.7	28

Photo-enhanced MOCVD of Pb(Zr,Ti)O 3 thin films using O 3. , 1994, 2364, 478.

0

HIRONORI FUJISAWA

#	Article	IF	CITATIONS
145	Electrical properties of Pb(Zr,Ti)O/sub 3/ thin films on Ir and IrO/sub 2/ electrodes by MOCVD. , 0, , .		5
146	MOCVD growth and characterization of Pb-based ferroelectric thin films. , 0, , .		2
147	Refinement of Pb(Zr,Ti)O/sub 3/ thin films grown by MOCVD. , 0, , .		1
148	Dependence of electrical properties of Pb(Zr,Ti)O/sub 3/ thin films on the grain size and film thickness. , 0, , .		0
149	Preparation of Ir-based thin film electrodes by MOCVD. , 0, , .		2
150	Observation of polarization reversal processes in Pb(Zr,Ti)O/sub 3/ thin films using atomic force microscopy. , 0, , .		0
151	Domain motions in epitaxial Pb(Zr,Ti)O/sub 3/ thin film capacitors by piezoresponse scanning force microscopy. , 0, , .		0
	Growth and Electrical Properties of		

PbMg<sub>0.047</sub>Nb<sub>0.095</sub>Zr<sub>0.416</sub>Ti<sub>0.442</sub>O<
Films Fabricated by Metalorganic Decomposition. Key Engineering Materials, 0, 421-422, 148-152.