
Wesley T Fraser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6461648/publications.pdf Version: 2024-02-01

WESLEY T FDASED

#	Article	IF	CITATIONS
1	Sporopollenin chemistry and its durability in the geological record: an integration of extant and fossil chemical data across the seed plants. Palaeontology, 2021, 64, 285-305.	2.2	15
2	Proxy reconstruction of ultraviolet-B irradiance at the Earth's surface, and its relationship with solar activity and ozone thickness. Holocene, 2020, 30, 155-161.	1.7	15
3	Ginkgo leaf cuticle chemistry across changing pCO2 regimes. Palaontologische Zeitschrift, 2019, 93, 549-558.	1.6	5
4	Experimental determination of Li isotope behaviour during basalt weathering. Chemical Geology, 2019, 517, 34-43.	3.3	50
5	Variability in modern pollen rain from moist and wet tropical forest plots in Ghana, West Africa. Grana, 2019, 58, 45-62.	0.8	1
6	Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture. Journal of Micropalaeontology, 2019, 38, 83-95.	3.6	27
7	Stratigraphic completeness and resolution in an ancient mudrock succession. Sedimentology, 2018, 65, 1875-1890.	3.1	11
8	Pollen-vegetation richness and diversity relationships in the tropics. Vegetation History and Archaeobotany, 2018, 27, 411-418.	2.1	31
9	The modern pollen–vegetation relationships of a tropical forest–savannah mosaic landscape, Ghana, West Africa. Palynology, 2018, 42, 324-338.	1.5	20
10	Shedding light on sporopollenin chemistry, with reference to UV reconstructions. Review of Palaeobotany and Palynology, 2017, 238, 1-6.	1.5	50
11	Chemotaxonomy as a tool for interpreting the cryptic diversity of Poaceae pollen. Review of Palaeobotany and Palynology, 2016, 235, 140-147.	1.5	45
12	Pollen and spores as biological recorders of past ultraviolet irradiance. Scientific Reports, 2016, 6, 39269.	3.3	27
13	Palaeoproxies: botanical monitors and recorders of atmospheric change. Palaeontology, 2015, 58, 759-768.	2.2	21
14	Impacts of zero tillage on soil enzyme activities, microbial characteristics and organic matter functional chemistry in temperate soils. European Journal of Soil Biology, 2015, 68, 9-17.	3.2	103
15	Emission of methane, carbon monoxide, carbon dioxide and shortâ€chain hydrocarbons from vegetation foliage under ultraviolet irradiation. Plant, Cell and Environment, 2015, 38, 980-989.	5.7	42
16	The impact of oxidation on spore and pollen chemistry. Journal of Micropalaeontology, 2015, 34, 139-149.	3.6	59
17	Pollen and spores as a passive monitor of ultraviolet radiation. Frontiers in Ecology and Evolution, 2014, 2, .	2.2	35
18	Changes in spore chemistry and appearance with increasing maturity. Review of Palaeobotany and Palynology, 2014, 201, 41-46.	1.5	46

Wesley T Fraser

#	Article	IF	CITATIONS
19	Evolutionary stasis of sporopollenin biochemistry revealed by unaltered Pennsylvanian spores. New Phytologist, 2012, 196, 397-401.	7.3	66
20	A novel palaeoaltimetry proxy based on spore and pollen wall chemistry. Earth and Planetary Science Letters, 2012, 353-354, 22-28.	4.4	35
21	Formation of a polyalkyl macromolecule from the hydrolysable component within sporopollenin during heating/pyrolysis experiments with Lycopodium spores. Journal of Analytical and Applied Pyrolysis, 2012, 95, 138-144.	5.5	44
22	UV-B absorbing pigments in spores: biochemical responses to shade in a high-latitude birch forest and implications for sporopollenin-based proxies of past environmental change. Polar Research, 2011, 30, 8312.	1.6	38
23	Plant spore walls as a record of long-term changes in ultraviolet-B radiation. Nature Geoscience, 2008, 1, 592-596.	12.9	68
24	Formation of uraniumâ€ŧhoriumâ€rich bitumen nodules in the Lockne impact structure, Sweden: A mechanism for carbon concentration at impact sites. Meteoritics and Planetary Science, 2007, 42, 1961-1969.	1.6	3
25	Rapid determination of spore chemistry using thermochemolysis gas chromatography-mass spectrometry and micro-Fourier transform infrared spectroscopy. Photochemical and Photobiological Sciences, 2007, 6, 689.	2.9	58