
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6461622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Refractory Diborides of Zirconium and Hafnium. Journal of the American Ceramic Society, 2007, 90, 1347-1364.	1.9	1,711
2	High‧trength Zirconium Diborideâ€Based Ceramics. Journal of the American Ceramic Society, 2004, 87, 1170-1172.	1.9	725
3	Ultra-high temperature ceramics: Materials for extreme environments. Scripta Materialia, 2017, 129, 94-99.	2.6	551
4	UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications. Electrochemical Society Interface, 2007, 16, 30-36.	0.3	465
5	Thermodynamic Analysis of ZrB2?SiC Oxidation: Formation of a SiC-Depleted Region. Journal of the American Ceramic Society, 2007, 90, 143-148.	1.9	401
6	Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1500°C. Journal of the European Ceramic Society, 2007, 27, 2495-2501.	2.8	339
7	Pressureless Densification of Zirconium Diboride with Boron Carbide Additions. Journal of the American Ceramic Society, 2006, 89, 1544-1550.	1.9	299
8	Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide ceramics. Journal of the European Ceramic Society, 2007, 27, 2077-2083.	2.8	283
9	Pressureless Sintering of Zirconium Diboride. Journal of the American Ceramic Society, 2006, 89, 450-456.	1.9	278
10	Thermophysical Properties of ZrB ₂ and ZrB ₂ –SiC Ceramics. Journal of the American Ceramic Society, 2008, 91, 1405-1411.	1.9	278
11	Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2–SiC. Journal of Materials Science, 2007, 42, 2735-2744.	1.7	239
12	The ZrB2 Volatility Diagram. Journal of the American Ceramic Society, 2005, 88, 3509-3512.	1.9	217
13	Oxidation of ultra-high temperature transition metal diboride ceramics. International Materials Reviews, 2012, 57, 61-72.	9.4	201
14	Pressureless Sintering of Zirconium Diboride: Particle Size and Additive Effects. Journal of the American Ceramic Society, 2008, 91, 1398-1404.	1.9	187
15	Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys. Surface and Coatings Technology, 2002, 155, 208-213.	2.2	183
16	Thermal shock resistance of ZrB2 and ZrB2–30% SiC. Materials Chemistry and Physics, 2008, 112, 140-145.	2.0	169
17	Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics. Journal of Materials Science, 2004, 39, 5951-5957.	1.7	160
18	Pressureless Sintering of Zirconium Diboride Using Boron Carbide and Carbon Additions. Journal of the American Ceramic Society, 2007, 90, 3660-3663.	1.9	156

#	Article	IF	CITATIONS
19	Pressureless sintering of carbon-coated zirconium diboride powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 459, 167-171.	2.6	152
20	Oxidation of Zirconium Diboride?Silicon Carbide at 1500�C at a Low Partial Pressure of Oxygen. Journal of the American Ceramic Society, 2006, 89, 3240-3245.	1.9	150
21	Pressureless Sintering of ZrB ₂ –SiC Ceramics. Journal of the American Ceramic Society, 2008, 91, 26-32.	1.9	144
22	Hot Pressing of Tantalum Carbide With and Without Sintering Additives. Journal of the American Ceramic Society, 2007, 90, 393-401.	1.9	138
23	Pressureless sintering of carbon nanotube–Al2O3 composites. Journal of the European Ceramic Society, 2010, 30, 1373-1380.	2.8	134
24	Lowâ€ŧemperature sintering of singleâ€phase, highâ€entropy carbide ceramics. Journal of the American Ceramic Society, 2019, 102, 7217-7224.	1.9	128
25	Strength of Zirconium Diboride to 2300°C. Journal of the American Ceramic Society, 2013, 96, 47-50.	1.9	123
26	Mechanical behavior of zirconium diboride–silicon carbide–boron carbide ceramics up to 2200°C. Journal of the European Ceramic Society, 2015, 35, 463-476.	2.8	123
27	Low-Temperature Densification of Zirconium Diboride Ceramics by Reactive Hot Pressing. Journal of the American Ceramic Society, 2006, 89, 3638-3645.	1.9	117
28	Synthesis, densification, and mechanical properties of TaB2. Materials Letters, 2008, 62, 4251-4253.	1.3	116
29	Deposition and characterization of cerium oxide conversion coatings on aluminum alloy 7075-T6. Surface and Coatings Technology, 2004, 176, 349-356.	2.2	109
30	Fabrication and properties of reactively hot pressed ZrB2–SiC ceramics. Journal of the European Ceramic Society, 2007, 27, 2729-2736.	2.8	109
31	Densification and mechanical properties of TaC-based ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 501, 37-43.	2.6	109
32	Strength of singleâ€phase highâ€entropy carbide ceramics up to 2300°C. Journal of the American Ceramic Society, 2021, 104, 419-427.	1.9	104
33	Improved Oxidation Resistance of Zirconium Diboride by Tungsten Carbide Additions. Journal of the American Ceramic Society, 2008, 91, 3530-3535.	1.9	101
34	Mechanical properties of sintered ZrB2–SiC ceramics. Journal of the European Ceramic Society, 2011, 31, 893-901.	2.8	99
35	Super-strong materials for temperatures exceeding 2000 °C. Scientific Reports, 2017, 7, 40730.	1.6	99
36	Cerium-based oxide coatings. Current Opinion in Solid State and Materials Science, 2015, 19, 69-76.	5.6	98

3

#	Article	IF	CITATIONS
37	The effect of post-treatment time and temperature on cerium-based conversion coatings on Al 2024-T3. Corrosion Science, 2010, 52, 360-368.	3.0	95
38	Mechanical behavior of zirconium diboride–silicon carbide ceramics at elevated temperature in air. Journal of the European Ceramic Society, 2013, 33, 2889-2899.	2.8	92
39	Reactive hot pressing of zirconium diboride. Journal of the European Ceramic Society, 2009, 29, 3401-3408.	2.8	90
40	A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying. Additive Manufacturing, 2017, 15, 102-112.	1.7	88
41	Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O highâ€entropy ceramics. Journal of the American Ceramic Society, 2019, 102, 2228-2237.	1.9	87
42	Densification, Mechanical Properties, and Oxidation Resistance of TaC–TaB ₂ Ceramics. Journal of the American Ceramic Society, 2008, 91, 4129-4132.	1.9	86
43	Measurement of thermal residual stresses in ZrB2–SiC composites. Journal of the European Ceramic Society, 2011, 31, 1811-1820.	2.8	85
44	Effect of Starting Particle Size and Oxygen Content on Densification of ZrB ₂ . Journal of the American Ceramic Society, 2011, 94, 429-435.	1.9	84
45	A Novel Approach to Developing Biomimetic ("Nacreâ€Likeâ€) Metal ompliantâ€Phase (Nickel–Alumina) Ceramics through Coextrusion. Advanced Materials, 2016, 28, 10061-10067.	11.1	83
46	Mechanical Characterization of <scp><scp>ZrB₂–SiC</scp></scp> Composites with Varying <scp><scp>SiC</scp></scp> Particle Sizes. Journal of the American Ceramic Society, 2011, 94, 4410-4418.	1.9	76
47	Temperature Jump Phenomenon During Plasmatron Testing of ZrB2-SiC Ultrahigh-Temperature Ceramics. Journal of Thermophysics and Heat Transfer, 2012, 26, 559-572.	0.9	70
48	Zirconium Carbide?Tungsten Cermets Prepared by In Situ Reaction Sintering. Journal of the American Ceramic Society, 2007, 90, 1930-1933.	1.9	69
49	Microwave sintering of a ZrB2–B4C particulate ceramic composite. Composites Part A: Applied Science and Manufacturing, 2008, 39, 449-453.	3.8	69
50	Microstructure and mechanical characterization of ZrC–Mo cermets produced by hot isostatic pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 497, 79-86.	2.6	68
51	Enhanced densification and mechanical properties of ZrB2–SiC processed by a preceramic polymer coating route. Scripta Materialia, 2008, 59, 123-126.	2.6	68
52	Al ₂ O ₃ –Ni Composites with High Strength and Fracture Toughness. Journal of the American Ceramic Society, 2000, 83, 1279-1280.	1.9	65
53	Effects of acid and alkaline based surface preparations on spray deposited cerium based conversion coatings on Al 2024-T3. Applied Surface Science, 2009, 255, 4061-4065.	3.1	65
54	Borate Volatility from SOFC Sealing Glasses. Journal of the American Ceramic Society, 2008, 91, 2564-2569.	1.9	64

#	Article	IF	CITATIONS
55	Stress measurements in ZrB2–SiC composites using Raman spectroscopy and neutron diffraction. Journal of the European Ceramic Society, 2010, 30, 2165-2171.	2.8	63
56	Thermal Properties of (Zr, <scp>TM</scp>)B ₂ Solid Solutions with <scp>TM</scp> Â=ÂHf, Nb, W, Ti, and Y. Journal of the American Ceramic Society, 2014, 97, 1552-1558.	1.9	63
57	Synthesis of ultra-refractory transition metal diboride compounds. Journal of Materials Research, 2016, 31, 2757-2772.	1.2	63
58	Processing of dense high-entropy boride ceramics. Journal of the European Ceramic Society, 2020, 40, 3815-3823.	2.8	62
59	Freeze-form extrusion fabrication of ceramic parts. Virtual and Physical Prototyping, 2006, 1, 93-100.	5.3	61
60	Twoâ€step synthesis process for highâ€entropy diboride powders. Journal of the American Ceramic Society, 2020, 103, 724-730.	1.9	59
61	Ultraâ€High Temperature Mechanical Properties of a Zirconium Diboride–Zirconium Carbide Ceramic. Journal of the American Ceramic Society, 2016, 99, 597-603.	1.9	58
62	Oxidation of Zirconium Diboride with Tungsten Carbide Additions. Journal of the American Ceramic Society, 2011, 94, 1198-1205.	1.9	57
63	Zirconium Diboride with High Thermal Conductivity. Journal of the American Ceramic Society, 2014, 97, 1689-1691.	1.9	56
64	A study of size effects in bioinspired, "nacre-likeâ€ , metal-compliant-phase (nickel-alumina) coextruded ceramics. Acta Materialia, 2018, 148, 147-155.	3.8	56
65	Silicon carbide–titanium diboride ceramic composites. Journal of the European Ceramic Society, 2013, 33, 2943-2951.	2.8	54
66	High-Entropy Ultra-High-Temperature Borides and Carbides: A New Class of Materials for Extreme Environments. Annual Review of Materials Research, 2021, 51, 165-185.	4.3	53
67	Oxidation of ZrB2-SiC Ultrahigh-Temperature Ceramic Composites in Dissociated Air. Journal of Thermophysics and Heat Transfer, 2009, 23, 267-278.	0.9	52
68	Mechanical behaviour of carbon fibre reinforced TaC/SiC and ZrC/SiC composites up to 2100°C. Journal of the European Ceramic Society, 2019, 39, 780-787.	2.8	52
69	Dispersion of Zirconium Diboride in an Aqueous, High-Solids Paste. International Journal of Applied Ceramic Technology, 2007, 4, 470-479.	1.1	50
70	Effect of alkaline cleaning and activation on aluminum alloy 7075-T6. Applied Surface Science, 2011, 257, 1859-1863.	3.1	50
71	Dissolution of cerium from cerium-based conversion coatings on Al 7075-T6 in 0.1M NaCl solutions. Corrosion Science, 2012, 60, 290-295.	3.0	50
72	TEM investigation of hot pressed â€10 vol.%SiC–ZrB ₂ composite. Advances in Applied Ceramics, 2011, 110, 1-7.	0.6	47

#	Article	IF	CITATIONS
73	Chromate formation at the interface between a solid oxide fuel cell sealing glass and interconnect alloy. Journal of Power Sources, 2012, 205, 301-306.	4.0	47
74	The effect of a graphite addition on oxidation of ZrB2–SiC in air at 1500°C. Journal of the European Ceramic Society, 2013, 33, 413-421.	2.8	45
75	Effect of Nb content on the phase composition, densification, microstructure, and mechanical properties of high-entropy boride ceramics. Journal of the European Ceramic Society, 2021, 41, 92-100.	2.8	45
76	Sintering Mechanisms and Kinetics for Reaction Hotâ€Pressed ZrB ₂ . Journal of the American Ceramic Society, 2015, 98, 2344-2351.	1.9	44
77	Effect of a weak fiber interface coating in ZrB2 reinforced with long SiC fibers. Materials and Design, 2015, 88, 610-618.	3.3	42
78	Effects of temperature and the incorporation of W on the oxidation of ZrB2 ceramics. Corrosion Science, 2014, 80, 221-228.	3.0	41
79	Response of nanocrystalline cerium-based conversion coatings on Al 2024-T3 to chloride environments. Materials Letters, 2007, 61, 3778-3782.	1.3	40
80	ZrB2-MoSi2 ceramics: A comprehensive overview of microstructure and properties relationships. Part I: Processing and microstructure. Journal of the European Ceramic Society, 2019, 39, 1939-1947.	2.8	40
81	Effect of Precursor Particle Size on the Densification and Crystallization Behavior of Mullite. Journal of the American Ceramic Society, 1993, 76, 433-437.	1.9	38
82	Microstructure and properties of Al2O3-Al(Si) and Al2O3-Al(Si)-Si composites formed byin situ reaction of Al with aluminosilicate ceramics. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 2122-2129.	1.1	38
83	Processing of ZrC?Mo Cermets for High-Temperature Applications, Part I: Chemical Interactions in the ZrC?Mo System. Journal of the American Ceramic Society, 2007, 90, 1998-2002.	1.9	38
84	Entropy Landscaping of Highâ€Entropy Carbides. Advanced Materials, 2021, 33, e2102904.	11.1	38
85	Titanium diboride–silicon carbide–boron carbide ceramics with superâ€high hardness and strength. Journal of the American Ceramic Society, 2018, 101, 497-501.	1.9	37
86	Effect of Phosphate Source on Post-Treatment of Cerium-Based Conversion Coatings on Al 2024-T3. Journal of the Electrochemical Society, 2009, 156, C400.	1.3	36
87	Densification Behavior and Microstructure Evolution of Hot-Pressed HfB2. Journal of the American Ceramic Society, 2011, 94, 49-58.	1.9	36
88	Processing, microstructure, and mechanical properties of large-grained zirconium diboride ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 670, 196-204.	2.6	36
89	Processing of ZrC–Mo Cermets for High Temperature Applications, Part II: Pressureless Sintering and Mechanical Properties. Journal of the American Ceramic Society, 2008, 91, 873-878.	1.9	34
90	Formation of subsurface crevices in aluminum alloy 2024-T3 during deposition of cerium-based conversion coatings. Surface and Coatings Technology, 2010, 204, 4095-4100.	2.2	34

#	Article	IF	CITATIONS
91	Formation of microporous silica gels from a modified silicon alkoxide. I. Base-catalyzed gels. Journal of Non-Crystalline Solids, 1992, 144, 45-52.	1.5	33
92	Reactive Processing in Ceramic-Based Systems. International Journal of Applied Ceramic Technology, 2006, 3, 1-12.	1.1	33
93	Plasma arc welding of ZrB2–20vol% ZrC ceramics. Journal of the European Ceramic Society, 2014, 34, 3549-3557.	2.8	33
94	Thermal Shock Resistance and Fracture Behavior of ZrB ₂ –Based Fibrous Monolith Ceramics. Journal of the American Ceramic Society, 2009, 92, 161-166.	1.9	32
95	Densification, microstructure, and mechanical properties of ZrC–SiC ceramics. Journal of the American Ceramic Society, 2019, 102, 5786-5795.	1.9	32
96	The irradiation response of ZrC ceramics under 10 MeV Au3+ ion irradiation at 800 ºC. Journal of the European Ceramic Society, 2020, 40, 1791-1800.	2.8	32
97	Kinetics of Ceramicâ€Metal Composite Formation by Reactive Metal Penetration. Journal of the American Ceramic Society, 1998, 81, 2533-2541.	1.9	31
98	Effect of gelatin additions on the corrosion resistance of cerium based conversion coatings spray deposited on Al 2024-T3. Surface and Coatings Technology, 2009, 203, 3533-3540.	2.2	31
99	Superhard Boride–Carbide Particulate Composites. Journal of the American Ceramic Society, 2010, 93, 3580-3583.	1.9	31
100	Alkaline activation of Al 7075-T6 for deposition of cerium-based conversion coatings. Surface and Coatings Technology, 2011, 205, 4312-4319.	2.2	31
101	Influence of fibre content on the strength of carbon fibre reinforced HfC/SiC composites up to 2100 °C. Journal of the European Ceramic Society, 2019, 39, 3594-3603.	2.8	31
102	A simple route to fabricate strong boride hierarchical composites for use at ultra-high temperature. Composites Part B: Engineering, 2020, 183, 107618.	5.9	31
103	Thermal Properties of Hfâ€Doped ZrB ₂ Ceramics. Journal of the American Ceramic Society, 2015, 98, 2689-2691.	1.9	30
104	Densification behavior of ZrB2-MoSi2 ceramics: The formation and evolution of core-shell solid solution structures. Journal of Alloys and Compounds, 2019, 779, 950-961.	2.8	30
105	Investigation of laser sintering for freeform fabrication of zirconium diboride parts. Virtual and Physical Prototyping, 2012, 7, 25-36.	5.3	29
106	Binderless WC with high strength and toughness up to 1500â€ [−] °C. Journal of the European Ceramic Society, 2020, 40, 2287-2294.	2.8	29
107	Near-Net-Shape Processing of Metal-Ceramic Composites by Reactive Metal Penetration. Journal of the American Ceramic Society, 1996, 79, 2497-2499.	1.9	28
108	Nano-scale microstructure damage by neutron irradiations in a novel Boron-11 enriched TiB2 ultra-high temperature ceramic. Acta Materialia, 2019, 165, 26-39.	3.8	28

#	Article	IF	CITATIONS
109	Effect of ZrB2 content on the densification, microstructure, and mechanical properties of ZrC-SiC ceramics. Journal of the European Ceramic Society, 2020, 40, 220-225.	2.8	28
110	Thermal Properties of (Zr, TM)B ₂ Solid Solutions with TMÂ=ÂTa, Mo, Re, V, and Cr. Journal of the American Ceramic Society, 2015, 98, 637-644.	1.9	27
111	Oxidation of zirconium diboride with niobium additions. Journal of the European Ceramic Society, 2013, 33, 1591-1598.	2.8	26
112	Thermal properties and thermal shock resistance of liquid phase sintered ZrC–Mo cermets. Materials Chemistry and Physics, 2009, 115, 690-695.	2.0	24
113	Optical Emission Spectroscopy During Plasmatron Testing of ZrB2-SiC Ultrahigh-Temperature Ceramic Composites. Journal of Thermophysics and Heat Transfer, 2009, 23, 279-285.	0.9	24
114	Effect of Carbon and Oxygen on the Densification and Microstructure of Hot Pressed Zirconium Diboride. Journal of the American Ceramic Society, 2013, 96, 3622-3630.	1.9	24
115	Microstructural evolution of cerium-based coatings on AZ31 magnesium alloys. Surface and Coatings Technology, 2014, 246, 77-84.	2.2	24
116	Effect of carbon on the thermal and electrical transport properties of zirconium diboride. Journal of the European Ceramic Society, 2015, 35, 887-896.	2.8	24
117	Characterization of Localized Surface States of Al 7075-T6 during Deposition of Cerium-Based Conversion Coatings. Journal of the Electrochemical Society, 2010, 157, C282.	1.3	23
118	The role of ceramic and glass science research in meeting societal challenges: Report from an <scp>NSF</scp> â€sponsored workshop. Journal of the American Ceramic Society, 2017, 100, 1777-1803.	1.9	23
119	A modified phase-field model for quantitative simulation of crack propagation in single-phase and multi-phase materials. Engineering Fracture Mechanics, 2018, 200, 339-354.	2.0	23
120	Effects of Ti, Y, and Hf additions on the thermal properties of ZrB2. Journal of the European Ceramic Society, 2020, 40, 3824-3828.	2.8	22
121	From thermal conductive to thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity of ZrC. Journal of Materials Science and Technology, 2021, 82, 105-113.	5.6	22
122	Characterization of Cerium-Based Conversion Coatings on Al 7075-T6 Deposited from Chloride and Nitrate Salt Solutions. Journal of the Electrochemical Society, 2011, 158, C88.	1.3	21
123	Elevated Temperature Thermal Properties of <scp><scp>ZrB₂</scp></scp> with Carbon Additions. Journal of the American Ceramic Society, 2012, 95, 1077-1085.	1.9	21
124	Formation of structural intermetallics by reactive metal penetration of Ti and Ni oxides and aluminates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 2100-2104.	1.1	20
125	Elevated Temperature Strength Enhancement of ZrB ₂ –30 vol% SiC Ceramics by Postsintering Thermal Annealing. Journal of the American Ceramic Society, 2016, 99, 962-970.	1.9	20
126	Reaction Processing of Ultraâ€High Temperature W/Ta ₂ Câ€Based Cermets. Journal of the American Ceramic Society, 2009, 92, 1966-1971.	1.9	19

#	Article	IF	CITATIONS
127	Processing of Carbon Nanofiber Reinforced ZrB2 Matrix Composites for Aerospace Applications. Advanced Engineering Materials, 2010, 12, 623-626.	1.6	19
128	Microstructural Effects on the Mechanical Properties of <scp><scp>SiC</scp></scp> â€15Âvol% <scp><scp>TiB</scp></scp> ₂ Particulateâ€Reinforced Ceramic Composites. Journal of the American Ceramic Society, 2013, 96, 577-583.	1.9	19
129	Predicting effective fracture toughness of ZrB2-based ultra-high temperature ceramics by phase-field modeling. Materials and Design, 2020, 192, 108713.	3.3	19
130	Synthesis of ZrCx with controlled carbon stoichiometry by low temperature solid state reaction. Journal of the European Ceramic Society, 2019, 39, 2594-2600.	2.8	18
131	Highâ€entropy boride–carbide ceramics by sequential boro/carbothermal synthesis. Journal of the American Ceramic Society, 2022, 105, 5543-5547.	1.9	18
132	Mechanical and thermal properties of AlN–BN–SiC ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 494, 239-246.	2.6	17
133	ZrB2-MoSi2 ceramics: A comprehensive overview of microstructure and properties relationships. Part II: Mechanical properties. Journal of the European Ceramic Society, 2019, 39, 1948-1954.	2.8	17
134	Roomâ€ŧemperature mechanical properties of a highâ€entropy diboride. International Journal of Applied Ceramic Technology, 2022, 19, 2293-2299.	1.1	17
135	Transmission electron microscopy study of interfacial microstructure formed by reacting Al–Mg alloy with mullite at high temperature. Acta Materialia, 1999, 47, 3099-3104.	3.8	16
136	Mechanical properties of reactively processed W/Ta2C-based composites. Journal of the European Ceramic Society, 2010, 30, 2197-2201.	2.8	16
137	Thermal decomposition behavior of praseodymium oxides, hydroxides, and carbonates. Inorganic Materials, 2011, 47, 974-978.	0.2	16
138	Plasma Arc Welding of <scp><scp>TiB</scp></scp> ₂ –20Âvol% <scp><scp>TiC</scp></scp> . Journal of the American Ceramic Society, 2014, 97, 56-59.	1.9	16
139	Characterization of fusion welded ceramics in the SiC-ZrB2-ZrC system. Journal of the European Ceramic Society, 2021, 41, 2255-2262.	2.8	16
140	Densification Behavior and Thermal Properties of Hafnium Diboride with the Addition of Boron Carbides. Journal of the American Ceramic Society, 2012, 95, 2035-2043.	1.9	15
141	Escape from the strength-to-toughness paradox: Bulk ceramics through dual composite architectures. Journal of the European Ceramic Society, 2018, 38, 2961-2970.	2.8	15
142	Effect of moisture on the oxidation behavior of ZrB ₂ . Journal of the American Ceramic Society, 2021, 104, 1058-1066.	1.9	15
143	Design of ultra-high temperature ceramic nano-composites from multi-scale length microstructure approach. Composites Part B: Engineering, 2021, 226, 109344.	5.9	15
144	Spray Deposition of Cerium Oxideâ€Based Conversion Coatings on Al 2024â€T3. International Journal of Applied Ceramic Technology, 2008, 5, 63-73.	1.1	14

#	Article	IF	CITATIONS
145	Thermal Shock Resistance of an AlN-BN-SiC Ceramic. Journal of the American Ceramic Society, 2009, 92, 1358-1361.	1.9	14
146	Chemical and structural analyses of subsurface crevices formed during spontaneous deposition of cerium-based conversion coatings. Materials Characterization, 2011, 62, 1071-1075.	1.9	14
147	Carbon vacancy ordering in zirconium carbide powder. Journal of the American Ceramic Society, 2020, 103, 2891-2898.	1.9	14
148	Detonation synthesis of silicon carbide nanoparticles. Ceramics International, 2020, 46, 6951-6954.	2.3	14
149	Oxidation of ZrB ₂ and ZrB ₂ -SiC Ceramics with Tungsten Additions. ECS Transactions, 2009, 16, 137-145.	0.3	13
150	Screening study of spray solution parameters for depositing cerium-based conversion coatings on Al alloy 2024-T3. Journal of Applied Electrochemistry, 2010, 40, 551-559.	1.5	13
151	Photo-assisted reduction in nanostructured cerium-based coatings. Scripta Materialia, 2013, 69, 489-492.	2.6	13
152	Microstructure and mechanical properties of reactionâ€hotâ€pressed zirconium diboride based ceramics. International Journal of Applied Ceramic Technology, 2019, 16, 1715-1722.	1.1	13
153	Thermal properties of ZrB2-TiB2 solid solutions. Journal of the European Ceramic Society, 2021, 41, 7434-7441.	2.8	13
154	Thermal and electrical properties of a high entropy carbide (Ta, Hf, Nb, Zr) at elevated temperatures. Journal of the American Ceramic Society, 2022, 105, 4426-4434.	1.9	13
155	Forming Al ₂ O ₃ –Al Composites with Controlled Compositions by Reactive Metal Penetration of Dense Aluminosilicate Preforms. Journal of the American Ceramic Society, 2000, 83, 1293-1295.	1.9	12
156	"Zirconium Carbide?Tungsten Cermets Prepared by In Situ Reaction Sintering". Journal of the American Ceramic Society, 2007, 90, 2296-2296.	1.9	12
157	Solidification of welded SiC–ZrB 2 –ZrC ceramics. Journal of the American Ceramic Society, 2018, 101, 4331-4339.	1.9	12
158	Processing and room temperature mechanical properties of a zirconium carbide ceramic. Journal of the American Ceramic Society, 2021, 104, 413-418.	1.9	12
159	Characterization of MgAl2O4 sintered ceramics. Science of Sintering, 2019, 51, 363-376.	O.5	12
160	Pressureless sintering of zirconium diboride with carbon and boron carbide nanopowder. Ceramics International, 2022, 48, 13071-13079.	2.3	12
161	Densification and Microstructure of Sodium-Doped Colloidal Mullite. Journal of the American Ceramic Society, 1994, 77, 1377-1380.	1.9	11
162	Investigations into the slip behavior of zirconium diboride. Journal of Materials Research, 2016, 31, 2749-2756.	1.2	11

#	Article	IF	CITATIONS
163	Thermal properties and elastic constants of ζâ€Ta ₄ C _{3â^'} <i>_x</i> . Journal of the American Ceramic Society, 2020, 103, 2986-2990.	1.9	11
164	Electrochemical Characterization of Al 7075-T6 Surface Oxide After Alkaline Treatments. Journal of the Electrochemical Society, 2011, 158, C296.	1.3	10
165	The response of ZrB2 to simulated plasma-facing material conditions of He irradiation at high temperature. Journal of Nuclear Materials, 2018, 507, 112-125.	1.3	10
166	Electronic structure and thermal conductivity of zirconium carbide with hafnium additions. Journal of the American Ceramic Society, 2021, 104, 4708-4717.	1.9	10
167	Reactive hot pressing of Al2O3-Ni composites. Journal of Materials Science, 2003, 38, 3073-3080.	1.7	9
168	Factorial design to minimize residual oxygen in reaction hotâ€pressed zirconium diboride. International Journal of Applied Ceramic Technology, 2017, 14, 636-643.	1.1	9
169	Clays. , 2008, , 111-133.		9
170	Mechanical Behavior and Applications of Plasma Arc Welded Ceramics. International Journal of Applied Ceramic Technology, 2016, 13, 41-49.	1.1	8
171	Response of isotopically tailored titanium diboride to neutron irradiation. Journal of the American Ceramic Society, 2019, 102, 85-89.	1.9	8
172	Superhard singleâ€phase (Ti,Cr)B ₂ ceramics. Journal of the American Ceramic Society, 2022, 105, 5032-5038.	1.9	8
173	Processing and thermal properties of an Mo5Si3C–SiC ceramic. Intermetallics, 2008, 16, 854-859.	1.8	7
174	Mechanical Characterization of Annealed <scp><scp>ZrB</scp></scp> ₂ – <scp><scp>SiC</scp> </scp> Composites. Journal of the American Ceramic Society, 2013, 96, 845-851.	1.9	7
175	Elevated temperature electrical resistivity measurements of zirconium diboride using the van der Pauw Method. Journal of the American Ceramic Society, 2019, 102, 7397-7404.	1.9	7
176	Formation kinetics and cation inversion in mechanically activated MgAl2O4 spinel ceramics. Journal of Thermal Analysis and Calorimetry, 2020, 140, 95-107.	2.0	7
177	Early stage oxidation of ZrC under 10â€ [–] MeV Au3+ ion-irradiation at 800â€ [–] °C. Corrosion Science, 2020, 169, 108609.	3.0	7
178	Effect of Phase on the Electrochemical and Morphological Properties of Praseodymium-Based Coatings. ECS Transactions, 2011, 33, 53-66.	0.3	6
179	Directly Deposited Cerium Phosphate Coatings for the Corrosion Protection of Al 2024-T3. ECS Transactions, 2010, 28, 203-215.	0.3	6
180	Deposition of Cerium-Based Conversion Coatings on Aluminum Alloy 380. International Journal of Corrosion, 2012, 2012, 1-9.	0.6	6

#	Article	IF	CITATIONS
181	Synthesis, densification, microstructure, and mechanical properties of samarium hexaboride ceramic. Journal of the American Ceramic Society, 2019, 102, 1379-1385.	1.9	6
182	Solute distributions in tantalum ontaining zirconium diboride ceramics. Journal of the American Ceramic Society, 2020, 103, 2880-2890.	1.9	6
183	High-Velocity Impact Resistance of ZrB2-SiC. Ceramic Engineering and Science Proceedings, 0, , 3-9.	0.1	5
184	Sub-Surface Electrochemical Effects on the Spontaneous Deposition of Cerium Conversion Coatings on Aluminum Alloys. ECS Transactions, 2009, 19, 101-113.	0.3	5
185	Detonation synthesis of alpha-variant silicon carbide. AlP Conference Proceedings, 2018, , .	0.3	5
186	Ceria-based coatings and pigments. , 2020, , 211-257.		5
187	Mechanical properties of borothermally synthesized zirconium diboride at elevated temperatures. International Journal of Applied Ceramic Technology, 2021, 18, 1235-1243.	1.1	5
188	Refractory Oxides. , 2008, , 87-110.		5
189	Solidâ€state formation mechanisms of core–shell microstructures in (Zr,Ta)B ₂ ceramics. Journal of the American Ceramic Society, 2022, 105, 3147-3152.	1.9	5
190	Mechanical properties of fusion welded ceramics in the SiC-ZrB2 and SiC-ZrB2-ZrC systems. Journal of the European Ceramic Society, 2022, 42, 2107-2117.	2.8	5
191	Quantitative inspection of grainâ€scale chemical inhomogeneities in highâ€entropy AlB ₂ â€type transition metal diborides. Journal of the American Ceramic Society, 2022, 105, 6910-6923.	1.9	5
192	The Effect of Phosphate Source on the Post-treatment of Cerium Based Conversion Coatings on Al 2024-T3 and its Correlation to Corrosion Performance. ECS Transactions, 2009, 16, 47-60.	0.3	4
193	Characterization of Transport Processes in a Praseodymium-Containing Coating. ECS Transactions, 2010, 28, 229-237.	0.3	4
194	Characterization of Cobalt-Containing and Cobalt-free Trivalent Chromium Passivation Layers on γ-ZnNi-Coated Al6061-T6 Substrates. ACS Applied Materials & Interfaces, 2021, 13, 4535-4544.	4.0	4
195	Measurement of the melting temperature of ZrB ₂ as determined by laser heating and spectrometric analysis. Journal of the American Ceramic Society, 2021, 104, 2780-2787.	1.9	4
196	Strength and Toughness of Ceramic-Metal Composites Prepared by Reactive Hot Pressing. Ceramic Engineering and Science Proceedings, 0, , 659-666.	0.1	3
197	Thermal properties of a reaction hot pressed Moâ‰寮Si3Câ‰⊉ ceramic. Intermetallics, 2008, 16, 1047-1052.	1.8	3
198	Corrosion Protection of Cerium-Based Conversion Coatings with Subsurface Crevices. ECS Transactions, 2010, 28, 187-201.	0.3	3

#	Article	IF	CITATIONS
199	Effect of Humidity on Cerium-based Conversion Coatings on Al 7075-T6. ECS Transactions, 2010, 28, 217-228.	0.3	3
200	Multifunctional UV (MUV) curable corrosion coatings for aerospace applications. Metal Finishing, 2010, 108, 28-31.	0.1	3
201	Shock focusing effects on silica phase production during cyclotrimethylene trinitramine/2,4,6-trinitrotoluene detonations. Journal of Applied Physics, 2021, 129, 045901.	1.1	3
202	Zirconium diboride laminates for improved damage tolerance at elevated temperatures. International Journal of Applied Ceramic Technology, 2021, 18, 1845-1852.	1.1	3
203	Heating rate effects on the thermal and mechanical properties of ZrB ₂ . Journal of the American Ceramic Society, 2022, 105, 169-180.	1.9	3
204	Characterization of cobalt containing and cobalt-free trivalent chromium passivations on γ-ZnNi coated steel substrates. Thin Solid Films, 2021, 735, 138894.	0.8	3
205	Relating detonation parameters to the detonation synthesis of silicon carbide. Journal of Applied Physics, 2022, 131, .	1.1	3
206	Ceramic-Metal and Ceramic-Intermetallic Composites by Reactive Processing. Ceramic Engineering and Science Proceedings, 0, , 667-674.	0.1	2
207	Reactive Hot Pressing of Aluminaâ€Molybdenum Disilicide Composites. Journal of the American Ceramic Society, 2002, 85, 258-260.	1.9	2
208	Refractory Selection for High-Temperature Black Liquor Gasification. Journal of the American Ceramic Society, 2006, 89, 309-315.	1.9	2
209	Electrochemical and Structural Changes in Cerium Based Conversion Coatings during Exposure to Salt Spray. ECS Transactions, 2009, 25, 3-17.	0.3	2
210	Modeling of Oxidation Effects on Heat Transfer Behavior of ZrB2 and ZrB2-SiC Ceramics at High Temperature. , 2012, , .		2
211	Detonation synthesis of nanoscale silicon carbide from elemental silicon. Ceramics International, 2022, 48, 4456-4463.	2.3	2
212	Microstructural and Optical Properties of MgAl2O4 Spinel: Effects of Mechanical Activation, Y2O3 and Graphene Additions. Materials, 2021, 14, 7674.	1.3	2
213	Three-Dimensional Micromechanical Modeling of Continuous Fiber Reinforced Ceramic Composites With Interfaces. , 2012, , .		1
214	Processing, microstructure, and mechanical properties of hotâ€pressed ZrB 2 ceramics with a complex Zr/Si/Oâ€based additive. International Journal of Applied Ceramic Technology, 2021, 18, 2224.	1.1	1
215	Effects of inert additives on cyclotrimethylene-trinitramine (RDX)/trinitrotoluene (TNT) detonation parameters to predict detonation synthesis phase production. AIP Conference Proceedings, 2020, , .	0.3	1
216	Firstâ€principles study of the thermal properties of Zr ₂ C and Zr ₂ CO. Journal of the American Ceramic Society, 2022, 105, 4921-4929.	1.9	1

#	Article	IF	CITATIONS
217	Fusion Welding of Refractory Metals and ZrB2-SiC-ZrC Ceramics. Journal of the European Ceramic Society, 2022, , .	2.8	1
218	Using Science, Engineering, and Education to Address Water Supply Challenges in the Highlands of Guatemala. , 2007, , .		0
219	Publisher's Note: Electrochemical Characterization of Al 7075-T6 Surface Oxide after Alkaline Treatments [J. Electrochem. Soc., 158, C296 (2011)]. Journal of the Electrochemical Society, 2011, 158, S25.	1.3	Ο
220	Simulation of Thermal and Mechanical Response of (Zr,W)B ₂ Ceramic after Oxidation. Applied Mechanics and Materials, 0, 446-447, 40-44.	0.2	0
221	A note of thanks to John Halloran. Journal of the American Ceramic Society, 2018, 101, 5293-5293.	1.9	0
222	Thank you Lisa Klein. Journal of the American Ceramic Society, 2020, 103, 1481-1481.	1.9	0
223	Remembering Joanna McKittrick. Journal of the American Ceramic Society, 2020, 103, 2277-2277.	1.9	0
224	International Year of Glass. Journal of the American Ceramic Society, 2020, 103, 3919-3919.	1.9	0
225	Sequential ion-electron irradiation of zirconium carbide ceramics: Microstructural analysis. Journal of the European Ceramic Society, 2021, 41, 48-48.	2.8	0
226	Thermodynamics of Refractories for Black Liquor Gasification. Ceramic Transactions, 0, , 53-62.	0.1	0
227	Undergraduate Laboratory Experience For Ceramics. , 0, , .		0
228	Departing message from the outgoing Editorâ€inâ€Chief. Journal of the American Ceramic Society, 2022, 105, 7027-7028.	1.9	0