Mark R Waterland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6460145/publications.pdf

Version: 2024-02-01

77 papers

2,124 citations

236925 25 h-index 233421 45 g-index

78 all docs 78 docs citations

78 times ranked 3033 citing authors

#	Article	IF	CITATIONS
1	Controlled Hydrolysis of TiO ₂ from HCl Digestion Liquors of Ilmenite. Industrial & Digestion Liquor	3.7	3
2	Characterization of the Degradation of Sheepskin by Monitoring Cytochrome c of Bacteria by Raman Spectroscopy. Analytical Letters, 2021, 54, 1005-1022.	1.8	1
3	Effect on cell membrane structural integrity of xylitolâ€coated probiotics when stabilised with milk solids – A FTIR study. International Journal of Dairy Technology, 2021, 74, 128-138.	2.8	4
4	Optical Detection of CoV-SARS-2 Viral Proteins to Sub-Picomolar Concentrations. ACS Omega, 2021, 6, 6404-6413.	3.5	38
5	Monitoring the mode of action of synthetic and natural biocides against Aeromonas hydrophila by Raman spectroscopy and chemometrics. Journal of Leather Science and Engineering, 2021, 3, .	6.0	3
6	Cholesterol-phospholipid interactions resist the detergent effect of bovine bile. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111842.	5.0	3
7	Validity and reliability of Raman spectroscopy for carotenoid assessment in cattle skin. Biochemistry and Biophysics Reports, 2021, 27, 101036.	1.3	2
8	The Bromineâ€Chlorine Interhalides [Br ₃ Cl ₅] ² ^{â€"} , [Br ₄ Cl ₄] ² ^{â€"} and [Br _{6.56} Cl _{1.44}] ² ^{â€"} . European Journal of Inorganic Chemistry, 2020, 2020, 3302-3310.	2.0	4
9	Ultrasensitive surface-enhanced Raman scattering detection of biological pollutants by controlled evaporation on omniphobic substrates. Heliyon, 2020, 6, e04317.	3.2	3
10	RAMAN AND ATR-FTIR SPECTROSCOPY TOWARDS CLASSIFICATION OF WET BLUE BOVINE LEATHER USING RATIOMETRIC AND CHEMOMETRIC ANALYSIS. Journal of Leather Science and Engineering, 2020, 2, .	6.0	29
11	Raman spectroscopic detection of carotenoids in cattle skin. RSC Advances, 2020, 10, 22758-22765.	3.6	7
12	Hydrophobic chemical treatment of aggregate surfaces to re-engineer the mineral/bitumen interface and improve bitumen adhesion. Road Materials and Pavement Design, 2020, , 1-22.	4.0	2
13	A new class of ferromagnetic semiconductor: Copper molybdate organic-inorganic compound with phenanthroline organic linkers. Journal of Magnetism and Magnetic Materials, 2020, 508, 166881.	2.3	2
14	Effect of blending conditions on nano-clay bitumen nanocomposite properties. Road Materials and Pavement Design, 2019, 20, 1735-1756.	4.0	27
15	Rational Synthesis, Structures and Properties of the Ionic Liquid Binary Iodineâ€Bromine Octahalide Series [I _{<i>n</i>} Br _{8â°'<i>n</i>}] ^{2â°'} (<i>n</i> =0, 2, 3, 4). Chemistry - A European Journal, 2019, 25, 11659-11669.	3.3	10
16	The Binary Iodineâ€Chlorine Octahalide Series [I _{<i>n</i>} Cl _{8â°'<i>n</i>}] ^{2â°'} (<i>n</i> =3, 3.6, 4). Chemistry - A European Journal, 2019, 25, 11650-11658.	3.3	12
17	Frontispiece: Rational Synthesis, Structures and Properties of the Ionic Liquid Binary Iodineâ€Bromine Octahalide Series [I _{<i>n</i>} Br _{8â°'<i>n</i>}] ^{2â°'} (<i>n</i> =0, 2, 3, 4). Chemistry - A European Journal, 2019, 25, .	3.3	0
18	Using <i>in vivo</i> nickel to direct the pyrolysis of hyperaccumulator plant biomass. Green Chemistry, 2019, 21, 1236-1240.	9.0	22

#	Article	IF	CITATIONS
19	Importance of intact secondary protein structures of cell envelopes and glass transition temperature of the stabilization matrix on the storage stability of probiotics. Food Research International, 2019, 123, 198-207.	6.2	8
20	The structure of tris(chloromethyl)amine in the gas phase using quantum chemical calculations and gas electron diffraction and as a solid and melt using Raman spectroscopy. Structural Chemistry, 2018, 29, 803-813.	2.0	3
21	Mid-infrared reflectance spectroscopy as a tool for forage feed composition prediction. Animal Feed Science and Technology, 2018, 241, 102-111.	2.2	10
22	Evidence of reduced species in molybdenum oxide-phenanthroline layered hybrids from structural, magnetic and X-ray photoelectron spectroscopy studies. Materials Letters, 2018, 231, 187-189.	2.6	1
23	Highly sensitive surface-enhanced Raman scattering detection of brodifacoum and 1080rodenticide in milk. , $2018,$, .		O
24	A spectroelectrochemical investigation of nanoparticle and molecular resonances in surface enhanced Raman scattering from crystal violet and malachite green. Journal of Raman Spectroscopy, 2017, 48, 405-412.	2.5	4
25	Development of novel polymer coating for FBG based relative humidity sensing. Sensors and Actuators A: Physical, 2016, 249, 217-224.	4.1	38
26	Diels–Alder Reaction of Anthranilic Acids: A Versatile Route to Dense Monolayers on Flat Edge and Basal Plane Graphitic Carbon Substrates. ACS Applied Materials & Samp; Interfaces, 2016, 8, 23389-23395.	8.0	8
27	Spontaneous Modification of Free-Floating Few-Layer Graphene by Aryldiazonium Ions: Electrochemistry, Atomic Force Microscopy, and Infrared Spectroscopy from Grafted Films. Journal of Physical Chemistry C, 2016, 120, 7543-7552.	3.1	17
28	Chemical and physical behaviour of heteroleptic 2,6-bis(1 H -benzimidazol-2-yl)pyridine and $2,2\hat{a}\in^2$: $6\hat{a}\in^2$, $2\hat{a}\in^3$ -terpyridine substituted tricyclophosphazene ruthenium(II) complexes. Polyhedron, 2016, 103, 217-226.	2.2	3
29	Investigation of polyimide coated fibre Bragg gratings for relative humidity sensing. Measurement Science and Technology, 2015, 26, 125101.	2.6	24
30	Polyimide coated fibre Bragg grating based moisture sensor development., 2015,,.		0
31	Quantum Capacitance of Aryldiazonium Modified Large Area Few-Layer Graphene Electrodes. Journal of Physical Chemistry C, 2015, 119, 25778-25785.	3.1	25
32	Avoiding cross-linking in iron-polyphosphazene metallo-polymers. Inorganic Chemistry Communication, 2015, 51, 1-3.	3.9	4
33	Terpyridine and 2,6-di(1H-pyrazol-1-yl)pyridine substituted cyclotri- and polyphosphazene ruthenium(II) complexes: Chemical and physical behaviour. Polyhedron, 2015, 85, 429-436.	2.2	16
34	Molecular excitons in a copper azadipyrrin complex. Dalton Transactions, 2014, 43, 17746-17753.	3.3	5
35	Stereoselective aggregation of chiral complexes with threefold-symmetric pendant carboxyl groups: an example of "perfect―self-assembly not seen in the crystalline state?. RSC Advances, 2013, 3, 12648.	3.6	1
36	An iron(II) spin crossover grafted cyclotriphosphazene. Polyhedron, 2013, 55, 37-44.	2.2	10

#	Article	IF	Citations
37	A behavioural difference between an iron(II) grafted polyphosphazene and its small molecule cyclophosphazene analogue. Inorganic Chemistry Communication, 2013, 37, 158-161.	3.9	7
38	Validating the use of a carbon dioxide laser for assessing nociceptive thresholds in adult domestic cats (Felis catus). Applied Animal Behaviour Science, 2013, 143, 104-109.	1.9	4
39	Development of polymer coated fibre Bragg gratings for relative humidity sensing. , $2013,$, .		1
40	Innovative Approach to Investigating the Microstructure of Calcified Tissues Using Specular Reflectance Fourier Transform-Infrared Microspectroscopy and Discriminant Analysis. Analytical Chemistry, 2012, 84, 3369-3375.	6.5	7
41	Influence of Doping on Hybrid Organic–Inorganic WO3(4,4′-bipyridyl)0.5 Materials. Journal of Physical Chemistry C, 2012, 116, 3787-3792.	3.1	6
42	Toward an Iron(II) Spin-Crossover Grafted Phosphazene Polymer. Inorganic Chemistry, 2012, 51, 8307-8316.	4.0	29
43	Luminescent Rhenium(I)-Dipyrrinato Complexes. Inorganic Chemistry, 2012, 51, 446-455.	4.0	64
44	Structural characterisation of difluoro-boron chelates of quino [7,8-h] quinoline. Inorganica Chimica Acta, 2012, 380, 278-283.	2.4	19
45	Mechanically interlocked gold and silver nanoparticles using metallosupramolecular catenane chemistry. Nanoscale, 2011, 3, 941.	5.6	17
46	Synthesis, Structural and Nonlinear Optical Properties of 2-(3-Cyano-4-{5-[1-(2-Hydroxyethyl)-) Tj ETQq0 0 0 rgE	BT /Overloc 0.9	ck 10 Tf 50 38 9
47	Exciton coupling in coordination compounds. Dalton Transactions, 2011, 40, 3097.	3.3	136
48	Raman spectroscopy of dipyrrins: nonresonant, resonant and surfaceâ€enhanced crossâ€sections and enhancement factors. Journal of Raman Spectroscopy, 2011, 42, 2154-2164.	2.5	8
49	Strongly Absorbing π–π* States in Heteroleptic Dipyrrin/2,2′â€Bipyridine Ruthenium Complexes: Excitedâ€State Dynamics from Resonance Raman Spectroscopy. Chemistry - an Asian Journal, 2010, 5, 2036-2046.	3.3	26
50	The Nature of the Phosphazene Nitrogen–Metal Bond: DFT Calculations on 2â€(Pyridyloxy)cyclophosphazene Complexes. European Journal of Inorganic Chemistry, 2010, 2010, 1619-1625.	2.0	42
51	Chromophoric dipyrrin complexes capable of binding to TiO2: Synthesis, structure and spectroscopy. Dalton Transactions, 2010, 39, 437-445.	3.3	77
52	Determination of Estriol 16-glucuronide in human urine with surface plasmon resonance and lateral flow immunoassays. Analytical Methods, 2010, 2, 368.	2.7	17
53	Determining the degree of methylesterification of pectin by ATR/FT-IR: Methodology optimisation and comparison with theoretical calculations. Carbohydrate Polymers, 2009, 78, 847-853.	10.2	121
54	Sensitive determination of estriol-16-glucuronide using surface plasmon resonance sensing. Steroids, 2009, 74, 819-824.	1.8	15

#	Article	IF	CITATIONS
55	Heteroleptic Dipyrrin/Bipyridine Complexes of Ruthenium(II). Inorganic Chemistry, 2009, 48, 13-15.	4.0	74
56	Ultrafast dynamics in Cu(I)bisdiimine complexes from resonance Raman intensities. Journal of Raman Spectroscopy, 2008, 39, 1556-1567.	2.5	45
57	Chemical Solution Route to Conformal Phosphor Coatings on Nanostructures. Advanced Materials, 2008, 20, 4704-4707.	21.0	13
58	Metalâ^'Metal Communication in Copper(II) Complexes of Cyclotetraphosphazene Ligands. Inorganic Chemistry, 2008, 47, 9182-9192.	4.0	44
59	Water-soluble Carbon Nanotube Chain-transfer Agents (CNT-CTAs). Chemistry Letters, 2007, 36, 1172-1173.	1.3	17
60	Using Internal Coordinates to Describe Photoinduced Geometry Changes in MLCT Excited States. Journal of Physical Chemistry A, 2007, 111, 4604-4611.	2.5	24
61	Opal and inverse opal photonic crystals: Fabrication and characterization. Polyhedron, 2007, 26, 356-368.	2.2	260
62	Resonance Raman Excitation Profile of a Ruthenium(II) Complex of Dipyrido[2,3-a:3 ,2 -c]phenazine. Journal of Physical Chemistry A, 2006, 110, 11194-11199.	2.5	24
63	Resonance Raman intensity analysis of an intramolecular charge-transfer process. Current Applied Physics, 2006, 6, 296-298.	2.4	1
64	Structural Changes upon Photoexcitation into the Metal-to-Ligand Charge-Transfer State of [Cu(pqx)(PPh3)2]+Probed by Resonance Raman Spectroscopy and Density Functional Theory. Journal of Physical Chemistry A, 2005, 109, 8826-8833.	2.5	32
65	Photocatalytic titania coatings. Current Applied Physics, 2004, 4, 189-192.	2.4	71
66	Unprecedented Oxo-Titanium Citrate Complex Precipitated from Aqueous Citrate Solutions, Exhibiting a Novel Bilayered Ti8O10Structural Core. Inorganic Chemistry, 2004, 43, 6300-6306.	4.0	43
67	Electron Injection Dynamics of Rull(dcbpy)2(SCN)2on Zirconia. Journal of Physical Chemistry B, 2002, 106, 6211-6219.	2.6	28
68	Symmetry breaking effects in NO3â^': Raman spectra of nitrate salts and ab initio resonance Raman spectra of nitrateâ€"water complexes. Journal of Chemical Physics, 2001, 114, 6249-6258.	3.0	144
69	Resonance Raman and ab Initio Studies of the Electronic Transitions of Aqueous Azide Anion. Journal of Physical Chemistry A, 2001, 105, 8385-8392.	2.5	18
70	Electronic absorption, resonance Raman and excited-state resonance Raman spectroscopy of rhenium(I) and copper(I) complexes, with substituted dipyrido[3,2-a:2′,3′-c]phenazine ligands, and their electron reduced products. Journal of Raman Spectroscopy, 2000, 31, 243-253.	2.5	40
71	Relaxation and electron transfer dynamics in bare and DTDCI sensitized MoS[sub 2] nanoclusters. Journal of Chemical Physics, 2000, 113, 5448.	3.0	15
72	Metal-to-ligand charge-transfer excited-states in binuclear copper(I) complexes. Tuning MLCT excited-states through structural modification of bridging ligands. A resonance Raman study. Dalton Transactions RSC, 2000, , 121-127.	2.3	13

#	Article	IF	CITATIONS
73	Resonance Raman Intensity Analysis of the Carbazole/Tetracyanoethylene Charge-Transfer Complex:Â Mode-Specific Reorganization Energies for a Hole-Transport Moleculeâ€. Journal of Physical Chemistry B, 2000, 104, 10727-10737.	2.6	47
74	Far-ultraviolet resonance Raman spectroscopy of nitrate ion in solution. Journal of Chemical Physics, 2000, 113, 6760-6773.	3.0	93
75	Determination of the Lowest Excited State of Metal Complexes of Dipyrido[3, 2-a:2′,3′-c]Phenazine. Laser Chemistry, 1999, 19, 287-289.	0.5	1
76	Spectroelectrochemical studies and excited-state resonance-Raman spectroscopy of some mononuclear rhenium(I) polypyridyl bridging ligand complexes. Crystal structure determination of tricarbonylchloro[2,3-di(2-pyridyl)quinoxaline]rhenium(I). Journal of the Chemical Society Dalton Transactions, 1998, , 185-192.	1.1	50
77	Spectroscopic and electrochemical studies of a series of copper(I) and rhenium(I) complexes with substituted dipyrido[3,2-a:2′,3′-c]phenazine ligands â€. Journal of the Chemical Society Dalton Transactions, 1998, , 609-616.	1.1	73