Madalina Maria Barsan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6459456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: A review. Analytica Chimica Acta, 2015, 881, 1-23.	2.6	327
2	Phenazines and Polyphenazines in Electrochemical Sensors and Biosensors. Analytical Letters, 2010, 43, 1588-1608.	1.0	115
3	Photodynamic Therapy Efficacy Enhanced by Dynamics: The Role of Charge Transfer and Photostability in the Selection of Photosensitizers. Chemistry - A European Journal, 2014, 20, 5346-5357.	1.7	105
4	Electrosynthesis and electrochemical characterisation of phenazine polymers for application in biosensors. Electrochimica Acta, 2008, 53, 3973-3982.	2.6	98
5	Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes. Food Chemistry, 2014, 149, 215-220.	4.2	84
6	Characterisation of poly(neutral red) modified carbon film electrodes; application as a redox mediator for biosensors. Journal of Solid State Electrochemistry, 2007, 11, 899-908.	1.2	83
7	Development of Greener Multi-Responsive Chitosan Biomaterials Doped with Biocompatible Ammonium Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2013, 1, 1480-1492.	3.2	78
8	A new self-assembled layer-by-layer glucose biosensor based on chitosan biopolymer entrapped enzyme with nitrogen doped graphene. Bioelectrochemistry, 2014, 99, 46-52.	2.4	76
9	An alcohol oxidase biosensor using PNR redox mediator at carbon film electrodes. Talanta, 2008, 74, 1505-1510.	2.9	74
10	Chemically modified graphene and nitrogen-doped graphene: Electrochemical characterisation and sensing applications. Electrochimica Acta, 2013, 114, 533-542.	2.6	65
11	Highly sensitive amperometric enzyme biosensor for detection of superoxide based on conducting polymer/CNT modified electrodes and superoxide dismutase. Sensors and Actuators B: Chemical, 2016, 236, 574-582.	4.0	65
12	Nanostructured electropolymerized poly(methylene blue) films from deep eutectic solvents. Optimization and characterization. Electrochimica Acta, 2017, 232, 285-295.	2.6	59
13	New electrode architectures based on poly(methylene green) and functionalized carbon nanotubes: Characterization and application to detection of acetaminophen and pyridoxine. Journal of Electroanalytical Chemistry, 2015, 736, 8-15.	1.9	56
14	Improved glucose label-free biosensor with layer-by-layer architecture and conducting polymer poly(3,4-ethylenedioxythiophene). Sensors and Actuators B: Chemical, 2018, 255, 3227-3234.	4.0	53
15	Development and characterization of a new conducting carbon composite electrode. Analytica Chimica Acta, 2009, 635, 71-78.	2.6	49
16	Recent advances in layer-by-layer strategies for biosensors incorporating metal nanoparticles. TrAC - Trends in Analytical Chemistry, 2016, 79, 286-296.	5.8	46
17	Nitrogen doped graphene and its derivatives as sensors and efficient direct electron transfer platform for enzyme biosensors. Sensors and Actuators B: Chemical, 2014, 203, 579-587.	4.0	45
18	L-lactate selective impedimetric bienzymatic biosensor based on lactate dehydrogenase and pyruvate oxidase. Electrochimica Acta, 2017, 231, 209-215.	2.6	36

#	Article	IF	CITATIONS
19	Nanocomposites based on carbon nanotubes and redox-active polymers synthesized in a deep eutectic solvent as a new electrochemical sensing platform. Mikrochimica Acta, 2017, 184, 3919-3927.	2.5	36
20	New CNT/poly(brilliant green) and CNT/poly(3,4-ethylenedioxythiophene) based electrochemical enzyme biosensors. Analytica Chimica Acta, 2016, 927, 35-45.	2.6	33
21	Carbon nanotube modified carbon cloth electrodes: Characterisation and application as biosensors. Electrochimica Acta, 2012, 85, 203-209.	2.6	30
22	Direct Immobilization of Biomolecules through Magnetic Forces on Ni Electrodes via Ni Nanoparticles: Applications in Electrochemical Biosensors. ACS Applied Materials & Interfaces, 2019, 11, 19867-19877.	4.0	30
23	Design and application of a flow cell for carbon-film based electrochemical enzyme biosensors. Talanta, 2007, 71, 1893-1900.	2.9	29
24	A new modified conducting carbon composite electrode as sensor for ascorbate and biosensor for glucose. Bioelectrochemistry, 2009, 76, 135-140.	2.4	29
25	Fabrication of carbon paste electrode containing a new inorganic–organic hybrid based on [SiW12O40]4â~' polyoxoanion and Nile blue and its electrocatalytic activity toward nitrite reduction. Journal of Electroanalytical Chemistry, 2013, 704, 80-85.	1.9	29
26	Methylene blue and neutral red electropolymerisation on AuQCM and on modified AuQCM electrodes: an electrochemical and gravimetric study. Physical Chemistry Chemical Physics, 2011, 13, 5462.	1.3	27
27	New Robust Redox and Conducting Polymer Modified Electrodes for Ascorbate Sensing and Glucose Biosensing. Electroanalysis, 2013, 25, 77-84.	1.5	25
28	Development and characterization of poly(3,4-ethylenedioxythiophene)-coated poly(methylene) Tj ETQq0 0 0 r	gBT /Overlo 2.1	ck_{23}^{10} Tf 50 3
29	Development and Application of Oxysilane Sol–Gel Electrochemical Glucose Biosensors Based on Cobalt Hexacyanoferrate Modified Carbon Film Electrodes. Electroanalysis, 2007, 19, 220-226.	1.5	21
30	Synthesis, characterization and influence of poly(brilliant green) on the performance of different electrode architectures based on carbon nanotubes and poly(3,4-ethylenedioxythiophene). Electrochimica Acta, 2013, 98, 199-207.	2.6	21
31	New redox and conducting polymer modified electrodes for cholesterol biosensing. Analytical Methods, 2013, 5, 1199.	1.3	21
32	Mechanism of Formation and Construction of Self-Assembled Myoglobin/Hyaluronic Acid Multilayer Films: An Electrochemical QCM, Impedance, and AFM Study. Journal of Physical Chemistry B, 2010, 114, 15354-15361.	1.2	20
33	Synthesis, structure, and spectral and electrochemical properties of chromium(<scp>iii</scp>) tris-(8-hydroxyquinolinate). Dalton Transactions, 2015, 44, 11491-11503.	1.6	19
34	Construction and evaluation of carbon black and poly(ethylene co-vinyl)acetate (EVA) composite electrodes for development of electrochemical (bio)sensors. Sensors and Actuators B: Chemical, 2017, 253, 10-18.	4.0	19
35	Acidic and Basic Functionalized Carbon Nanomaterials as Electrical Bridges in Enzyme Loaded Chitosan/Poly(styrene sulfonate) Selfâ€Assembled Layerâ€byâ€Layer Glucose Biosensors. Electroanalysis, 2015, 27, 2139-2149.	1.5	18
36	Molecular engineering of a π-conjugated polymer film of the azo dye Bismarck Brown Y. RSC Advances,	1.7	15

Molecular engineering of a 2016, 6, 101318-101322.

#	Article	IF	CITATIONS
37	Electrochemical Determination of Tyrosine using a Novel Tyrosinase Multi-Walled Carbon Nanotube (MWCNT) Polysulfone Modified Glassy Carbon Electrode (GCE). Analytical Letters, 2020, 53, 308-321.	1.0	14
38	Hybrid Nanocomposite Platform, Based on Carbon Nanotubes and Poly(Methylene Blue) Redox Polymer Synthesized in Ethaline Deep Eutectic Solvent for Electrochemical Determination of 5-Aminosalicylic Acid. Sensors, 2021, 21, 1161.	2.1	13
39	Nanostructured palladium doped nickel electrodes for immobilization of oxidases through nickel nanoparticles. Electrochimica Acta, 2019, 315, 102-113.	2.6	12
40	Mechanistic study of the formation of multiblock π-conjugated metallopolymer. Polyhedron, 2016, 117, 415-421.	1.0	10
41	Sustainable Electro-Responsive Semi-Interpenetrating Starch/Ionic Liquid Copolymer Networks for the Controlled Sorption/Release of Biomolecules. ACS Sustainable Chemistry and Engineering, 2019, 7, 10516-10532.	3.2	10
42	Electrospun conductive gold covered polycaprolactone fibers as electrochemical sensors for O2 monitoring in cell culture media. Electrochemistry Communications, 2020, 111, 106662.	2.3	10
43	Interaction between myoglobin and hyaluronic acid in layer-by-layer structures—An electrochemical study. Electrochimica Acta, 2010, 55, 6358-6366.	2.6	9
44	Disposable superoxide dismutase biosensors based on gold covered polycaprolactone fibers for the detection of superoxide in cell culture media. Talanta, 2022, 241, 123255.	2.9	9
45	New electrochemical sensor based on CoQ10 and cyclodextrin complexes for the detection of oxidative stress initiators. Electrochimica Acta, 2019, 302, 441-448.	2.6	7
46	Phosphonium ionic liquids as greener electrolytes for poly(vinyl chloride)-based ionic conducting polymers. RSC Advances, 2016, 6, 88979-88990.	1.7	6
47	Electrochemical assay for 20S proteasome activity and inhibition with anti-cancer drugs. Talanta, 2019, 199, 32-39.	2.9	6
48	Electrocatalytic Oxidation of Cysteine at a CoSalophen/ <i>n</i>â€{butyl)₄SiW₁₂O₄₀ Carbon Paste Electrode . Electroanalysis, 2013, 25, 2100-2108.	1.5	5
49	An antibody-based amperometric biosensor for 20S proteasome activity and inhibitor screening. Analyst, The, 2021, 146, 3216-3224.	1.7	5
50	Immobilized Antibodies on Mercaptophenylboronic Acid Monolayers for Dual-Strategy Detection of 20S Proteasome. Sensors, 2021, 21, 2702.	2.1	5
51	Quantification of cell oxygenation in 2D constructs of metallized electrospun polycaprolactone fibers encapsulating human valvular interstitial cells. Journal of Electroanalytical Chemistry, 2022, 905, 116005.	1.9	4
52	Bioconjugates of mercaptocarboxylic acids functionalized AuNP and superoxide dismutase for superoxide electrochemical monitoring. Mikrochimica Acta, 2022, 189, .	2.5	1
53	Label-free Evaluation of Carbon Nanoparticles in Layer-by-Layer Self-assembled Enzyme-based Biosensors. Procedia Technology, 2017, 27, 304-305.	1.1	0