Darren R Korber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/645938/publications.pdf

Version: 2024-02-01

172457 206112 2,603 72 29 48 citations h-index g-index papers 73 73 73 3071 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multilayer photonic films based on interlocked chiral-nematic cellulose nanocrystals in starch/chitosan. Carbohydrate Polymers, 2022, 275, 118709.	10.2	30
2	Draft Genome Sequence of Polaromonas eurypsychrophila AER18D-145, Isolated from a Uranium Tailings Management Facility in Northern Saskatchewan, Canada. Microbiology Resource Announcements, 2022, 11, e0001322.	0.6	1
3	Huddling together to survive: Population density as a survival strategy of non-spore forming bacteria under nutrient starvation and desiccation at solid-air interfaces. Microbiological Research, 2022, 258, 126997.	5. 3	2
4	Impact of sample collection on prokaryotic and eukaryotic diversity of niche environments of the oil-sand mining impacted Athabasca River Canadian Journal of Microbiology, 2021, 67, 813-826.	1.7	1
5	Antimicrobial Biodegradable Food Packaging Based on Chitosan and Metal/Metal-Oxide Bio-Nanocomposites: A Review. Polymers, 2021, 13, 2790.	4. 5	37
6	Piglet Gut and in-Barn Manure from Farms on a Raised without Antibiotics Program Display Reduced Antimicrobial Resistance but an Increased Prevalence of Pathogens. Antibiotics, 2021, 10, 1152.	3.7	4
7	Prediction of bacterial functional diversity in clay microcosms. Heliyon, 2021, 7, e08131.	3.2	4
8	Environmental Biofilms as Reservoirs for Antimicrobial Resistance. Frontiers in Microbiology, 2021, 12, 766242.	3.5	31
9	Effect of fermentation time on the nutritional properties of pea proteinâ€enriched flour fermented by <i>Aspergillus oryzae</i> and <i>Aspergillus niger</i> Cereal Chemistry, 2020, 97, 104-113.	2.2	27
10	Effect of fermentation time on the physicochemical and functional properties of pea proteinâ€enriched flour fermented by ⟨i⟩Aspergillus oryzae⟨/i⟩ and ⟨i⟩Aspergillus niger⟨/i⟩. Cereal Chemistry, 2020, 97, 416-428.	2.2	21
11	Physicochemical properties of enzymatically modified pea proteinâ€enriched flour treated by different enzymes to varying levels of hydrolysis. Cereal Chemistry, 2020, 97, 326-338.	2.2	26
12	Production of glycerol by Lactobacillus plantarum NRRL B-4496 and formation of hexamine during fermentation of pea protein enriched flour. Journal of Biotechnology, 2020, 323, 331-340.	3.8	9
13	A health metadata-based management approach for comparative analysis of high-throughput genetic sequences for quantifying antimicrobial resistance reduction in Canadian hog barns. Computational and Structural Biotechnology Journal, 2020, 18, 2629-2638.	4.1	8
14	Metatranscriptomic Insights Into the Response of River Biofilm Communities to Ionic and Nano-Zinc Oxide Exposures. Frontiers in Microbiology, 2020, 11, 267.	3.5	8
15	Scientific Prospects for Cannabis-Microbiome Research to Ensure Quality and Safety of Products. Microorganisms, 2020, 8, 290.	3.6	30
16	Nutritional properties of pea proteinâ€enriched flour treated with different proteases to varying degrees of hydrolysis. Cereal Chemistry, 2020, 97, 429-440.	2.2	12
17	Transcriptomics reveal core activities of the plant growth-promoting bacterium Delftia acidovorans RAY209 during interaction with canola and soybean roots. Microbial Genomics, 2020, 6, .	2.0	5
18	Effect of glycerol on the physicochemical properties of films based on legume protein concentrates: A comparative study. Journal of Texture Studies, 2019, 50, 539-546.	2.5	17

#	Article	IF	Citations
19	<i>N,N</i> â€Diethylâ€mâ€Toluamide Exposure at an Environmentally Relevant Concentration Influences River Microbial Community Development. Environmental Toxicology and Chemistry, 2019, 38, 2414-2425.	4.3	7
20	Importance of the RpoE Regulon in Maintaining the Lipid Bilayer during Antimicrobial Treatment with the Polycationic Agent, Chlorhexidine. Proteomics, 2018, 18, 1700285.	2.2	10
21	Effect of Lactobacillus plantarum Fermentation on the Surface and Functional Properties of Pea Protein-Enriched Flour. Food Technology and Biotechnology, 2018, 56, 411-420.	2.1	27
22	Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate. Food Technology and Biotechnology, 2018, 56, 257-264.	2.1	92
23	Pea-protein alginate encapsulation adversely affects development of clinical signs of <i>Citrobacter rodentium</i> -induced colitis in mice treated with probiotics. Canadian Journal of Microbiology, 2018, 64, 744-760.	1.7	5
24	Bacterial diversity and production of sulfide in microcosms containing uncompacted bentonites. Heliyon, 2018, 4, e00722.	3.2	24
25	Effect of Lactobacillus plantarum Fermentation on the Surface and Functional Properties of Pea Protein-Enriched Flour. Food Technology and Biotechnology, 2018, 56, .	2.1	1
26	Survival of probiotics in pea protein-alginate microcapsules with or without chitosan coating during storage and in a simulated gastrointestinal environment. Food Science and Biotechnology, 2017, 26, 189-194.	2.6	23
27	Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience. Frontiers in Microbiology, 2016, 7, 1563.	3.5	25
28	Biogeochemical Importance of the Bacterial Community in Uranium Waste Deposited at Key Lake, Northern Saskatchewan. Geomicrobiology Journal, 2016, 33, 807-821.	2.0	4
29	Culturability and diversity of microorganisms recovered from an eight-year old highly-compacted, saturated MX-80 Wyoming bentonite plug. Applied Clay Science, 2016, 126, 245-250.	5.2	16
30	Measuring microbial metabolism in atypical environments: Bentonite in used nuclear fuel storage. Journal of Microbiological Methods, 2016, 120, 79-90.	1.6	26
31	<i>Escherichia coli</i> O157: Insights into the adaptive stress physiology and the influence of stressors on epidemiology and ecology of this human pathogen. Critical Reviews in Microbiology, 2016, 42, 83-93.	6.1	30
32	Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Frontiers in Microbiology, 2015, 6, 685.	3 . 5	133
33	Evaluation of pea protein–polysaccharide matrices for encapsulation of acid-sensitive bacteria. Food Research International, 2015, 70, 118-124.	6.2	29
34	ZnO Nanoparticles Impose a Panmetabolic Toxic Effect Along with Strong Necrosis, Inducing Activation of the Envelope Stress Response in Salmonella enterica Serovar Enteritidis. Antimicrobial Agents and Chemotherapy, 2015, 59, 3317-3328.	3.2	55
35	Encapsulation of Bifidobacterium adolescentis cells with legume proteins and survival under stimulated gastric conditions and during storage in commercial fruit juices. Food Science and Biotechnology, 2015, 24, 383-391.	2.6	20
36	Bioconversion of glycerol to 1,3-propanediol in thin stillage-based media by engineered <i>Lactobacillus panis</i> PM1. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 629-635.	3.0	19

#	Article	IF	Citations
37	Entrapment, survival and release of Bifidobacterium adolescentis within chickpea protein-based microcapsules. Food Research International, 2014, 55, 20-27.	6.2	36
38	Metabolic Engineering of a Glycerol-Oxidative Pathway in Lactobacillus panis PM1 for Utilization of Bioethanol Thin Stillage: Potential To Produce Platform Chemicals from Glycerol. Applied and Environmental Microbiology, 2014, 80, 7631-7639.	3.1	20
39	Microscopic and Spectroscopic Analyses of Chlorhexidine Tolerance in Delftia acidovorans Biofilms. Antimicrobial Agents and Chemotherapy, 2014, 58, 5673-5686.	3.2	20
40	Contributions of citrate in redox potential maintenance and ATP production: metabolic pathways and their regulation in Lactobacillus panis PM1. Applied Microbiology and Biotechnology, 2013, 97, 8693-8703.	3.6	27
41	Development of extrusion-based legume protein isolate–alginate capsules for the protection and delivery of the acid sensitive probiotic, Bifidobacterium adolescentis. Food Research International, 2013, 54, 730-737.	6.2	49
42	Bacterial diversity and composition of an alkaline uranium mine tailings-water interface. Journal of Microbiology, 2013, 51, 558-569.	2.8	14
43	Isolation and characterization of novel 1,3-propanediol-producing Lactobacillus panis PM1 from bioethanol thin stillage. Applied Microbiology and Biotechnology, 2013, 97, 417-428.	3.6	37
44	Aerobic Biofilms Grown from Athabasca Watershed Sediments Are Inhibited by Increasing Concentrations of Bituminous Compounds. Applied and Environmental Microbiology, 2013, 79, 7398-7412.	3.1	26
45	Regulation of Dual Glycolytic Pathways for Fructose Metabolism in Heterofermentative Lactobacillus panis PM1. Applied and Environmental Microbiology, 2013, 79, 7818-7826.	3.1	23
46	Molecular and Antimicrobial Susceptibility Analyses Distinguish Clinical from Bovine Escherichia coli O157 Strains. Journal of Clinical Microbiology, 2013, 51, 2082-2088.	3.9	13
47	Next-Generation Sequencing of Microbial Communities in the Athabasca River and Its Tributaries in Relation to Oil Sands Mining Activities. Applied and Environmental Microbiology, 2012, 78, 7626-7637.	3.1	193
48	Monitoring the fate of copper nanoparticles in river biofilms using scanning transmission X-ray microscopy (STXM). Chemical Geology, 2012, 329, 18-25.	3.3	37
49	Colonization and bioherbicidal activity on green foxtail by <i>Pseudomonas fluorescens < /i>BRG100 in a pesta formulation. Canadian Journal of Microbiology, 2012, 58, 1-9.</i>	1.7	50
50	Heat acclimation and the role of RpoS in prolonged heat shock of Escherichia coli O157. Food Microbiology, 2012, 30, 457-464.	4.2	18
51	Molecular and microscopic assessment of the effects of caffeine, acetaminophen, diclofenac, and their mixtures on river biofilm communities. Environmental Toxicology and Chemistry, 2012, 31, 508-517.	4.3	56
52	Pea protein-based capsules for probiotic and prebiotic delivery. International Journal of Food Science and Technology, 2011, 46, 2248-2256.	2.7	58
53	Prolonged cold stress response of Escherichia coli O157 and the role of rpoS. International Journal of Food Microbiology, 2011, 146, 163-169.	4.7	40
54	Metatranscriptomic Analysis of the Response of River Biofilms to Pharmaceutical Products, Using Anonymous DNA Microarrays. Applied and Environmental Microbiology, 2010, 76, 5432-5439.	3.1	50

#	Article	IF	CITATIONS
55	Morphological and biochemical changes in <i>Pseudomonas fluorescens < /i> biofilms induced by sub-inhibitory exposure to antimicrobial agents. Canadian Journal of Microbiology, 2009, 55, 163-178.</i>	1.7	47
56	Cells in shearable and nonshearable regions of Salmonella enterica serovar Enteritidis biofilms are morphologically and physiologically distinct. Canadian Journal of Microbiology, 2009, 55, 955-966.	1.7	3
57	Architectural adaptation and protein expression patterns of Salmonella enterica serovar Enteritidis biofilms under laminar flow conditions. International Journal of Food Microbiology, 2008, 123, 109-120.	4.7	37
58	Differential Adaptive Response and Survival of <i>Salmonella enterica</i> Serovar Enteritidis Planktonic and Biofilm Cells Exposed to Benzalkonium Chloride. Antimicrobial Agents and Chemotherapy, 2008, 52, 3669-3680.	3.2	56
59	Effect of soil composition, temperature, indigenous microflora, and environmental conditions on the survival of <i>Escherichia coli </i>	1.7	56
60	Sensitivity of two techniques to detect Escherichia coli O157 in naturally infected bovine fecal samples. Food Microbiology, 2007, 24, 633-639.	4.2	7
61	Quantitative mapping of chlorhexidine in natural river biofilms. Science of the Total Environment, 2006, 369, 369-383.	8.0	74
62	Adaptive Resistance and Differential Protein Expression of Salmonella enterica Serovar Enteritidis Biofilms Exposed to Benzalkonium Chloride. Antimicrobial Agents and Chemotherapy, 2006, 50, 3588-3596.	3.2	88
63	Prevalence of Escherichia coli O157 in Saskatchewan Cattle: Characterization of Isolates by Using Random Amplified Polymorphic DNA PCR, Antibiotic Resistance Profiles, and Pathogenicity Determinants. Applied and Environmental Microbiology, 2006, 72, 4347-4355.	3.1	40
64	Treatment of Salmonella enterica Serovar Enteritidis with a Sublethal Concentration of Trisodium Phosphate or Alkaline pH Induces Thermotolerance. Applied and Environmental Microbiology, 2004, 70, 4613-4620.	3.1	55
65	High pH during Trisodium Phosphate Treatment Causes Membrane Damage and Destruction of Salmonella enterica Serovar Enteritidis. Applied and Environmental Microbiology, 2003, 69, 122-129.	3.1	66
66	Adaptation of bacterial communities to environmental transitions from labile to refractory substrates. International Microbiology, 2001, 4, 73-80.	2.4	8
67	[1] Reporter systems for microscopic analysis of microbial biofilms. Methods in Enzymology, 1999, 310, 3-20.	1.0	14
68	Germ Theory Vs. Community Theory in Understanding and Controlling the Proliferation of Biofilms. Advances in Dental Research, 1997, 11, 4-13.	3.6	39
69	Effect of Motility on Surface Colonization and Reproductive Success of <i>Pseudomonas fluorescens</i> in Dual-Dilution Continuous Culture and Batch Culture Systems. Applied and Environmental Microbiology, 1994, 60, 1421-1429.	3.1	86
70	Effect of gravity on bacterial deposition and orientation in laminar flow environments. Biofouling, 1990, 2, 335-350.	2.2	38
71	Effect of laminar flow velocity on the kinetics of surface recolonization by Mot+ and Motâ° Pseudomonas fluorescens. Microbial Ecology, 1989, 18, 1-19.	2.8	136
72	Behavior of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments. Microbial Ecology, 1987, 14, 1-14.	2.8	167