Shujuan Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6459332/publications.pdf

Version: 2024-02-01

361413 610901 1,699 23 20 24 citations h-index g-index papers 24 24 24 2150 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spin polarized graphene monolayer of van der Waals heterojunction for photocatalytic H2O overall splitting. Applied Catalysis B: Environmental, 2022, 315, 121569.	20.2	13
2	Photocatalysis Within Intrinsic Spontaneous Polarization Electric Field. Solar Rrl, 2021, 5, 2000446.	5.8	18
3	Spontaneous polarization electric field briskly boosting charge separation and transfer for sustainable photocatalytic H2 bubble evolution. Applied Catalysis B: Environmental, 2021, 283, 119631.	20.2	24
4	Boosting charge spatial separation efficiency for catalytic H2 bubble evolution under macroscopic spontaneous polarization electric field. Chemical Engineering Journal, 2021, 421, 127812.	12.7	4
5	Graphitic C ₂ N ₃ : An Allotrope of <i>g</i> -C ₃ N ₄ Containing Active Azide Pentagons as Metal-Free Photocatalyst for Abundant H ₂ Bubble Evolution. ACS Nano, 2021, 15, 7208-7215.	14.6	60
6	Sâ€Scheme Photocatalytic Systems. Solar Rrl, 2021, 5, 2100118.	5.8	128
7	In situ growing graphene on g-C3N4 with barrier-free interface and polarization electric field for strongly boosting solar energy conversion into H2 energy. Applied Catalysis B: Environmental, 2021, 287, 119986.	20.2	38
8	Photocatalytic H ₂ O Overall Splitting into H ₂ Bubbles by Single Atomic Sulfur Vacancy CdS with Spin Polarization Electric Field. ACS Nano, 2021, 15, 18006-18013.	14.6	100
9	Apparent Potential Difference Boosting Directional Electron Transfer for Full Solar Spectrumâ€Irradiated Catalytic H ₂ Evolution. Advanced Functional Materials, 2020, 30, 1908797.	14.9	64
10	The embedded CulnS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle. Chinese Journal of Catalysis, 2020, 41, 122-130.	14.0	132
11	Lowâ€Energy Facets on CdS Allomorph Junctions with Optimal Phase Ratio to Boost Charge Directional Transfer for Photocatalytic H ₂ Fuel Evolution. Small, 2020, 16, e2000944.	10.0	59
12	Hollow graphene with apparent potential difference to boost charge directional transfer for photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2020, 268, 118742.	20.2	23
13	In-plane coupling electric field driving charge directional transfer for highly efficient H2 bubble evolution. Chemical Engineering Journal, 2020, 396, 125365.	12.7	23
14	Efficient evolution of reactive oxygen species over the coordinated π-delocalization g-C3N4 with favorable charge transfer for sustainable pollutant elimination. Applied Catalysis B: Environmental, 2019, 249, 282-291.	20.2	53
15	Plasmonic Graphene-Like Au/C ₃ N ₄ Nanosheets with Barrier-Free Interface for Photocatalytically Sustainable Evolution of Active Oxygen Species. ACS Sustainable Chemistry and Engineering, 2019, 7, 2018-2026.	6.7	34
16	Coordination-driven synthesis of perfected π-conjugated graphitic carbon nitride with efficient charge transfer for oxygen activation and gas purification. Journal of Colloid and Interface Science, 2019, 538, 237-247.	9.4	9
17	Three-dimensional hollow graphene efficiently promotes electron transfer of Ag3PO4 for photocatalytically eliminating phenol. Applied Surface Science, 2018, 442, 224-231.	6.1	27
18	Strong base g-C3N4 with perfect structure for photocatalytically eliminating formaldehyde under visible-light irradiation. Applied Catalysis B: Environmental, 2018, 227, 145-152.	20.2	86

Shujuan Jiang

#	Article	IF	CITATIONS
19	Constructing effective photocatalytic purification system with P-introduced g-C 3 N 4 for elimination of UO 2 2+. Applied Surface Science, 2018, 430, 371-379.	6.1	62
20	Solid-Solution-Like o-C3N4/Ag2SO4 Nanocomposite as a Direct Z-Scheme Photocatalytic System for Photosynthesis of Active Oxygen Species. ACS Sustainable Chemistry and Engineering, 2018, 6, 10905-10913.	6.7	28
21	Graphene-like sulfur-doped g-C3N4 for photocatalytic reduction elimination of UO22+ under visible Light. Applied Catalysis B: Environmental, 2017, 205, 319-326.	20.2	160
22	Highly Dispersed Pt–Ni Nanoparticles on Nitrogen-Doped Carbon Nanotubes for Application in Direct Methanol Fuel Cells. Journal of Nanoscience and Nanotechnology, 2010, 10, 3895-3900.	0.9	22
23	CNx nanofibers converted from polypyrrole nanowires as platinum support for methanol oxidation. Energy and Environmental Science, 2009, 2, 224-229.	30.8	209