
Shunping Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6458779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed. Nano Letters, 2011, 11, 1657-1663.	9.1	649
2	Manipulating Coherent Plasmon–Exciton Interaction in a Single Silver Nanorod on Monolayer WSe ₂ . Nano Letters, 2017, 17, 3809-3814.	9.1	270
3	Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks. Nano Letters, 2011, 11, 471-475.	9.1	267
4	Branched Silver Nanowires as Controllable Plasmon Routers. Nano Letters, 2010, 10, 1950-1954.	9.1	264
5	Plasmonic Properties of Gold Nanoparticles Separated from a Gold Mirror by an Ultrathin Oxide. Nano Letters, 2012, 12, 2088-2094.	9.1	256
6	Chiral Surface Plasmon Polaritons on Metallic Nanowires. Physical Review Letters, 2011, 107, 096801.	7.8	225
7	Tunable SERS in Gold Nanorod Dimers through Strain Control on an Elastomeric Substrate. Nano Letters, 2010, 10, 4488-4493.	9.1	186
8	Recent Advances in Plasmonic Sensors. Sensors, 2014, 14, 7959-7973.	3.8	182
9	Plasmon Waveguiding in Nanowires. Chemical Reviews, 2018, 118, 2882-2926.	47.7	179
10	Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime. ACS Nano, 2018, 12, 10393-10402.	14.6	151
11	Highly tunable propagating surface plasmons on supported silver nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4494-4499.	7.1	117
12	Controlled Synthesis of Uniform Silver Nanospheres. Journal of Physical Chemistry C, 2010, 114, 7427-7431.	3.1	116
13	Optimizing Substrate-Mediated Plasmon Coupling toward High-Performance Plasmonic Nanowire Waveguides. ACS Nano, 2012, 6, 8128-8135.	14.6	116
14	Roles of MACl in Sequentially Deposited Bromineâ€Free Perovskite Absorbers for Efficient Solar Cells. Advanced Materials, 2021, 33, e2007126.	21.0	112
15	Merging Bound States in the Continuum at Off-High Symmetry Points. Physical Review Letters, 2021, 126, 117402.	7.8	107
16	Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe. Light: Science and Applications, 2018, 7, 56.	16.6	94
17	A highâ€throughput method for controlled hotâ€spot fabrication in SERSâ€active gold nanoparticle dimer arrays. Journal of Raman Spectroscopy, 2009, 40, 2171-2175.	2.5	91
18	Probing of sub-picometer vertical differential resolutions using cavity plasmons. Nature Communications, 2018, 9, 801.	12.8	89

SHUNPING ZHANG

#	Article	IF	CITATIONS
19	Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications. Nanoscale, 2013, 5, 6985.	5.6	78
20	Farâ€Field Spectroscopy and Nearâ€Field Optical Imaging of Coupled Plasmon–Phonon Polaritons in 2D van der Waals Heterostructures. Advanced Materials, 2016, 28, 2931-2938.	21.0	77
21	Ultrasensitive Size-Selection of Plasmonic Nanoparticles by Fano Interference Optical Force. ACS Nano, 2014, 8, 701-708.	14.6	75
22	Coherent Modulation of Propagating Plasmons in Silverâ€Nanowireâ€Based Structures. Small, 2011, 7, 593-596.	10.0	74
23	Simultaneous Surface-Enhanced Resonant Raman and Fluorescence Spectroscopy of Monolayer MoSe ₂ : Determination of Ultrafast Decay Rates in Nanometer Dimension. Nano Letters, 2019, 19, 6284-6291.	9.1	71
24	A General Method for Large-Scale Fabrication of Semiconducting Oxides with High SERS Sensitivity. ACS Applied Materials & Interfaces, 2017, 9, 14534-14544.	8.0	66
25	Transversely Divergent Second Harmonic Generation by Surface Plasmon Polaritons on Single Metallic Nanowires. Nano Letters, 2017, 17, 7803-7808.	9.1	63
26	Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement. Nano Research, 2018, 11, 4123-4132.	10.4	55
27	Tunable dark plasmons in a metallic nanocube dimer: toward ultimate sensitivity nanoplasmonic sensors. Nanoscale, 2016, 8, 13722-13729.	5.6	54
28	Ultrafast Modulation of Exciton–Plasmon Coupling in a Monolayer WS ₂ –Ag Nanodisk Hybrid System. ACS Photonics, 2019, 6, 2832-2840.	6.6	52
29	Plasmon-directed polymerization: Regulating polymer growth with light. Nano Research, 2018, 11, 6384-6390.	10.4	47
30	Efficient Second Harmonic Generation in a Hybrid Plasmonic Waveguide by Mode Interactions. Nano Letters, 2019, 19, 3838-3845.	9.1	47
31	Routing a Chiral Raman Signal Based on Spin-Orbit Interaction of Light. Physical Review Letters, 2019, 123, 183903.	7.8	45
32	Selectively Depopulating Valley-Polarized Excitons in Monolayer MoS ₂ by Local Chirality in Single Plasmonic Nanocavity. Nano Letters, 2020, 20, 4953-4959.	9.1	45
33	Strong plasmon–exciton coupling in transition metal dichalcogenides and plasmonic nanostructures. Nanoscale, 2021, 13, 4408-4419.	5.6	44
34	Precise Sorting of Gold Nanoparticles in a Flowing System. ACS Photonics, 2016, 3, 2497-2504.	6.6	42
35	Kagome bands disguised in a coloring-triangle lattice. Physical Review B, 2019, 99, .	3.2	42
36	Suppressing the Phase Segregation with Potassium for Highly Efficient and Photostable Inverted Wide-Band Gap Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 48458-48466.	8.0	41

SHUNPING ZHANG

#	Article	IF	CITATIONS
37	Merging bound states in the continuum by harnessing higher-order topological charges. Light: Science and Applications, 2022, 11, .	16.6	38
38	Self-Constructed Multiple Plasmonic Hotspots on an Individual Fractal to Amplify Broadband Hot Electron Generation. ACS Nano, 2021, 15, 10553-10564.	14.6	37
39	Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications. Chinese Physics B, 2018, 27, 107403.	1.4	34
40	Optical properties of single coupled plasmonic nanoparticles. Physical Chemistry Chemical Physics, 2013, 15, 4100.	2.8	31
41	Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy. Nano Letters, 2020, 20, 3499-3505.	9.1	27
42	Electrically Driven Highly Tunable Cavity Plasmons. ACS Photonics, 2019, 6, 823-829.	6.6	26
43	Single Nanoparticle Couplers for Plasmonic Waveguides. Small, 2014, 10, 4264-4269.	10.0	25
44	From gold nanorods to nanodumbbells: a different way to tailor surface plasmon resonances by a chemical route. Journal of Materials Chemistry, 2012, 22, 24006.	6.7	22
45	Near- and Deep-Ultraviolet Resonance Raman Spectroscopy of Pyrazineâ^'Al ₄ Complex and Al ₃ â^'Pyrazineâ^'Al ₃ Junction. Journal of Physical Chemistry C, 2009, 113, 19328-19334.	3.1	21
46	Electrically Driven Optical Antennas Based on Template Dielectrophoretic Trapping. ACS Nano, 2019, 13, 14041-14047.	14.6	19
47	Efficient Frequency Mixing of Guided Surface Waves by Atomically Thin Nonlinear Crystals. Nano Letters, 2020, 20, 7956-7963.	9.1	17
48	Nonlinear nanophotonics based on surface plasmon polaritons. Applied Physics Letters, 2021, 119, .	3.3	17
49	Analytical analysis of spectral sensitivity of plasmon resonances in a nanocavity. Nanoscale, 2019, 11, 10977-10983.	5.6	15
50	Temperature-dependent dark-field scattering of single plasmonic nanocavity. Nanophotonics, 2020, 9, 3347-3356.	6.0	13
51	The Universal Growth of Ultrathin Perovskite Single Crystals. Advanced Materials, 2022, 34, e2108396.	21.0	11
52	Closely packed metallic nanocuboid dimer allowing plasmomechanical strong coupling. Physical Review A, 2019, 99, .	2.5	10
53	Band alignment and interlayer hybridization in monolayer organic/WSe2 heterojunction. Nano Research, 0, , 1.	10.4	10
54	Superradiative plasmonic nanoantenna biosensors enable sensitive immunoassay using the naked eye. Nanoscale, 2021, 13, 2429-2435.	5.6	9

SHUNPING ZHANG

#	Article	IF	CITATIONS
55	Identification of twist-angle-dependent excitons in WS2/WSe2 heterobilayers. National Science Review, 2022, 9, .	9.5	9
56	Light-controlled nanoswitches: from fabrication to photoelectric switching. Nanoscale, 2019, 11, 18496-18500.	5.6	8
57	Antenna-coupled vacuum channel nano-diode with high quantum efficiency. Nanoscale, 2020, 12, 1495-1499.	5.6	8
58	Revealing the Competition between Defectâ€Trapped Exciton and Bandâ€Edge Exciton Photoluminescence in Monolayer Hexagonal WS ₂ . Advanced Optical Materials, 2022, 10, .	7.3	8
59	Relationship between Length and Surface-Enhanced Raman Spectroscopy Signal Strength in Metal Nanoparticle Chains: Ideal Models versus Nanofabrication. Journal of Nanotechnology, 2012, 2012, 1-7.	3.4	7
60	Mimicking plasmonic nanolaser emission by selective extraction of electromagnetic near-field from photonic microcavity. Nanoscale, 2018, 10, 7431-7439.	5.6	7
61	Steering Second-Harmonic Beams in Nanophotonic Waveguides by Gratings. ACS Photonics, 2019, 6, 3142-3149.	6.6	7
62	Near-field coupling and SERS effects of palladium nanoparticle dimers. Science Bulletin, 2010, 55, 2930-2936.	1.7	6
63	Unified treatment of scattering, absorption, and luminescence spectra from a plasmon–exciton hybrid by temporal coupled-mode theory. Journal of Chemical Physics, 2021, 155, 074104.	3.0	6
64	The novel plasmonics-transition metal dichalcogenides hybrid nanostructures. Scientia Sinica: Physica, Mechanica Et Astronomica, 2019, 49, 124205.	0.4	6
65	Switchable Electrically Driven Optical Antenna Based on Ultrathin Amorphous Silica. Advanced Optical Materials, 2021, 9, 2100191.	7.3	5
66	Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers. Chinese Physics B, 2022, 31, 017803.	1.4	3
67	Understanding the lineshape of surface-enhanced infrared absorption spectra. National Science Review, 2021, 8, nwaa240.	9.5	2
68	Controlling the immobilization process of an optically enhanced protein microarray for highly reproducible immunoassay. Nanoscale, 2021, 13, 4269-4277.	5.6	1
69	Chiral Surface Plasmon Polaritons on One-Dimension Nanowires. , 2014, , 221-237.		0
70	Nanocavity mediated directional coupler in plasmonics waveguides. Optics Communications, 2021, , 127160.	2.1	0