
Thomas J Cradick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6458151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Base Editors Flex Sights on Sickle-Cell Disease. CRISPR Journal, 2021, 4, 166-168.	2.9	Ο
2	InÂvivo genome editing at the albumin locus to treat methylmalonic acidemia. Molecular Therapy - Methods and Clinical Development, 2021, 23, 619-632.	4.1	10
3	Evaluation of Homology-Independent CRISPR-Cas9 Off-Target Assessment Methods. CRISPR Journal, 2020, 3, 440-453.	2.9	32
4	Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Blood, 2018, 131, 1960-1973.	1.4	156
5	Cellular Therapies: Gene Editing and Next-Gen CAR T Cells. , 2016, , 203-247.		1
6	The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells. Molecular Therapy, 2016, 24, 645-654.	8.2	190
7	Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome. Molecular Therapy, 2016, 24, 636-644.	8.2	204
8	A Burden of Rare Variants Associated with Extremes of Gene Expression in Human Peripheral Blood. American Journal of Human Genetics, 2016, 98, 299-309.	6.2	84
9	Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing. Molecular Therapy, 2016, 24, 475-487.	8.2	100
10	TALENs Facilitate Single-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Submucosal Gland Cell-derived CF-iPSCs. Molecular Therapy - Nucleic Acids, 2016, 5, e273.	5.1	38
11	Crispr/Cas9- Mediated Genome Editing of Human CD34+ Cells Upregulate Fetal Hemoglobin to Clinically Relevant Levels in Single Cell-Derived Erythroid Colonies. Blood, 2016, 128, 3623-3623.	1.4	3
12	Re-Creating Hereditary Persistence of Fetal Hemoglobin (HPFH) to Treat Sickle Cell Disease (SCD) and β-Thalassemia. Blood, 2016, 128, 4708-4708.	1.4	2
13	331. Development of Neisseria meningitidis CRISPR/Cas9 Systems for Efficient and Specific Genome Editing. Molecular Therapy, 2015, 23, S132-S133.	8.2	4
14	Gene Editing with Crispr-Cas9 for Treating Beta-Hemoglobinopathies. Blood, 2015, 126, 3376-3376.	1.4	4
15	Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering. PLoS ONE, 2015, 10, e0133373.	2.5	46
16	COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites. Molecular Therapy - Nucleic Acids, 2014, 3, e214.	5.1	315
17	CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Research, 2014, 42, 7473-7485.	14.5	548
18	Designing and Testing the Activities of TAL Effector Nucleases. Methods in Molecular Biology, 2014, 1114, 203-219.	0.9	6

THOMAS J CRADICK

#	Article	IF	CITATIONS
19	SAPTA: a new design tool for improving TALE nuclease activity. Nucleic Acids Research, 2014, 42, e47-e47.	14.5	49
20	An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage. Nucleic Acids Research, 2014, 42, e42-e42.	14.5	109
21	TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Research, 2014, 42, 6762-6773.	14.5	165
22	Nanomedicine: Tiny Particles and Machines Give Huge Gains. Annals of Biomedical Engineering, 2014, 42, 243-259.	2.5	26
23	Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9591-9596.	7.1	296
24	High-Throughput Cellular Screening of Engineered Nuclease Activity Using the Single-Strand Annealing Assay and Luciferase Reporter. Methods in Molecular Biology, 2014, 1114, 339-352.	0.9	13
25	Identification of Off-Target Cleavage Sites of Zinc Finger Nucleases and TAL Effector Nucleases Using Predictive Models. Methods in Molecular Biology, 2014, 1114, 371-383.	0.9	5
26	Codon Swapping of Zinc Finger Nucleases Confers Expression in Primary Cells and In Vivo from a Single Lentiviral Vector. Current Gene Therapy, 2014, 14, 365-376.	2.0	8
27	DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 2013, 31, 827-832.	17.5	3,953
28	CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Research, 2013, 41, 9584-9592.	14.5	544
29	Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Research, 2012, 40, 5560-5568.	14.5	160
30	Engineering imaging probes and molecular machines for nanomedicine. Science China Life Sciences, 2012, 55, 843-861.	4.9	13
31	ZFN-Site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinformatics, 2011, 12, 152.	2.6	38
32	Zinc-finger Nucleases as a Novel Therapeutic Strategy for Targeting Hepatitis B Virus DNAs. Molecular Therapy, 2010, 18, 947-954.	8.2	162
33	Controlling gene expression in Drosophila using engineered zinc finger protein transcription factors. Biochemical and Biophysical Research Communications, 2006, 348, 873-879.	2.1	7
34	Defining critical residues m the epitope for a hiv-neutralizing monoclonal antibody using phage display and peptide array technologies. Gene, 1993, 137, 63-68.	2.2	51