
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6458110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The stability of berm breakwaters, state of art and sensitivity analysis. Coastal Engineering, 2022, 172, 104059.	1.7	1
2	Experimental study of wave overtopping at rubble mound seawalls. Coastal Engineering, 2022, 172, 104062.	1.7	9
3	A multi-model ensemble to investigate uncertainty in the estimation of wave-driven longshore sediment transport patterns along a non-straight coastline. Coastal Engineering, 2022, 173, 104080.	1.7	7
4	Uncertainties in the Projected Patterns of Wave-Driven Longshore Sediment Transport Along a Non-straight Coastline. Frontiers in Marine Science, 2022, 9, .	1.2	1
5	On the mean overtopping rate of rubble mound structures. Coastal Engineering, 2022, 177, 104150.	1.7	3
6	Distribution of individual wave overtopping volumes at rubble mound seawalls. Coastal Engineering, 2022, 177, 104173.	1.7	3
7	Impacts of atmospheric stilling and climate warming on cyanobacterial blooms: An individual-based modelling approach. Water Research, 2022, 221, 118814.	5.3	13
8	Individual wave overtopping at coastal structures: A critical review and the existing challenges. Applied Ocean Research, 2021, 106, 102476.	1.8	22
9	Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods. Energies, 2021, 14, 902.	1.6	9
10	On the toe stability of rubble mound structures. Coastal Engineering, 2021, 164, 103835.	1.7	5
11	Wave overtopping at vertical and battered smooth impermeable structures. Coastal Engineering, 2021, 166, 103889.	1.7	5
12	Closure to "Revisiting Longshore Sediment Transport Formulas―by Saeed Shaeri, Amir Etemad-Shahidi, and Rodger Tomlinson. Journal of Waterway, Port, Coastal and Ocean Engineering, 2021, 147, .	0.5	0
13	Prediction of mean wave overtopping at simple sloped breakwaters using kernel-based methods. Journal of Hydroinformatics, 2021, 23, 1030-1049.	1.1	11
14	A decision-making process for wave energy converter and location pairing. Renewable and Sustainable Energy Reviews, 2021, 147, 111225.	8.2	29
15	Individual-based modelling of cyanobacteria blooms: Physical and physiological processes. Science of the Total Environment, 2021, 792, 148418.	3.9	25
16	A distributed wind downscaling technique for wave climate modeling under future scenarios. Ocean Modelling, 2020, 145, 101513.	1.0	12
17	Modeling the combined impact of climate change and sea-level rise on general circulation and residence time in a semi-enclosed sea. Science of the Total Environment, 2020, 740, 140073.	3.9	11
18	Revisiting Longshore Sediment Transport Formulas. Journal of Waterway, Port, Coastal and Ocean Engineering, 2020, 146, .	0.5	14

#	Article	IF	CITATIONS
19	On the stability of rock armored rubble mound structures. Coastal Engineering, 2020, 158, 103655.	1.7	16
20	THE COMPARISON OF EMPIRICAL FORMULAE FOR THE PREDICTION OF MEAN WAVE OVERTOPPING RATE AT ARMORED SLOPED STRUCTURES. Coastal Engineering Proceedings, 2020, , 22.	0.1	3
21	Accelerated numerical simulation to investigate morphology changes around small tidal inlets. Coastal Engineering Journal, 2019, 61, 535-558.	0.7	2
22	Effect of Sea Level Rise on the Wave Overtopping Rate at Berm Breakwater. Journal of Waterway, Port, Coastal and Ocean Engineering, 2019, 145, 04019019.	0.5	4
23	Wave run-up on bermed coastal structures. Applied Ocean Research, 2019, 86, 188-194.	1.8	7
24	A Weibull Distribution Based Technique for Downscaling of Climatic Wind Field. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55, 685-700.	1.3	11
25	Inter- and intra-annual variability of potential power production from wave energy converters. Energy, 2019, 169, 1224-1241.	4.5	35
26	Hydrosedimentological Modelling of a Small, Trained Tidal Inlet System, Currumbin Creek, Southeast Queensland, Australia. Journal of Coastal Research, 2018, 342, 341-359.	0.1	5
27	Experimental study of the mean wave overtopping rate of berm breakwaters at different wave steepness conditions. , 2018, , .		0
28	Modelling of flow around hexagonal and textured cylinders. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2018, 171, 99-114.	0.4	5
29	Numerical modelling to assess maintenance strategy management options for a small tidal inlet. Estuarine, Coastal and Shelf Science, 2017, 187, 273-292.	0.9	15
30	Estimation of Transverse Mixing Coefficient in Straight and Meandering Streams. Water Resources Management, 2017, 31, 3809-3827.	1.9	17
31	Developing an optimum hotspot identifier for wave energy extracting in the northern Persian Gulf. Renewable Energy, 2017, 114, 59-71.	4.3	49
32	Wave overtopping at berm breakwaters: Experimental study and development of prediction formula. Coastal Engineering, 2017, 130, 85-102.	1.7	20
33	Wave overtopping at berm breakwaters: Review and sensitivity analysis of prediction models. Coastal Engineering, 2017, 120, 1-21.	1.7	11
34	Dynamics of lock-release crystalline gravity currents. , 2017, 1, 213-218.		0
35	Strategic Evaluation Tool for Surface Water Quality Management Remedies in Drinking Water Catchments. Water (Switzerland), 2017, 9, 738.	1.2	5
36	Numerical modelling of the Gold Coast Seaway area hydrodynamics and littoral drift. Ocean Engineering, 2016, 121, 47-61.	1.9	19

#	Article	IF	CITATIONS
37	Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves. Renewable Energy, 2016, 94, 341-352.	4.3	40
38	Evaluation of Different Wind Fields for Storm Surge Modeling in the Persian Gulf. Journal of Coastal Research, 2016, 33, 596.	0.1	7
39	Run-up on vertical piles due to regular waves: Small-scale model tests and prediction formulae. Coastal Engineering, 2016, 118, 1-11.	1.7	23
40	Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast. Applied Energy, 2016, 184, 276-297.	5.1	78
41	Morphological evolution of the Nerang River Entrance ebb-tidal delta. Journal of Coastal Research, 2016, 75, 238-242.	0.1	4
42	Prediction of wave overtopping at vertical structures. Coastal Engineering, 2016, 109, 42-52.	1.7	28
43	Sustainability of wave energy resources in southern Caspian Sea. Energy, 2016, 97, 549-559.	4.5	48
44	Scour prediction in long contractions using ANFIS and SVM. Ocean Engineering, 2016, 111, 128-135.	1.9	119
45	A new method for the prediction of wave runup on vertical piles. Coastal Engineering, 2015, 98, 55-64.	1.7	33
46	Estimation of scour depth around circular piers: applications of model tree. Journal of Hydroinformatics, 2015, 17, 226-238.	1.1	16
47	Wave load formulae for prediction of wave-induced forces on a slender pile within pile groups. Coastal Engineering, 2015, 102, 49-68.	1.7	57
48	Climate change impact on wave energy in the Persian Gulf. Ocean Dynamics, 2015, 65, 777-794.	0.9	40
49	Effects of sea level rise on the salinity of Bahmanshir estuary. International Journal of Environmental Science and Technology, 2015, 12, 3329-3340.	1.8	16
50	How Does the Driver's Perception Reaction Time Affect the Performances of Crash Surrogate Measures?. PLoS ONE, 2015, 10, e0138617.	1.1	29
51	Prediction of scour at abutments using piecewise regression. Water Management, 2014, 167, 79-87.	0.4	4
52	Classification and Regression Trees Approach for Predicting Current-Induced Scour Depth Under Pipelines. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136, .	0.6	19
53	Effects of climate change on the thermal regime of a reservoir. Water Management, 2014, 167, 601-611.	0.4	10
54	Error distribution and correction of the predicted wave characteristics over the Persian Gulf. Ocean Engineering, 2014, 75, 81-89.	1.9	14

#	Article	IF	CITATIONS
55	Investigation of hydraulics transport time scales within the Arvand River estuary, Iran. Hydrological Processes, 2014, 28, 6006-6015.	1.1	4
56	Wave energy forecasting using artificial neural networks in the Caspian Sea. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2014, 167, 42-52.	1.4	11
57	A review of wave energy estimates for nearshore shelf waters off Australia. International Journal of Marine Energy, 2014, 7, 57-70.	1.8	40
58	Wave energy and hot spots in Anzali port. Energy, 2014, 74, 529-536.	4.5	31
59	New formulae for prediction of wave overtopping at inclined structures with smooth impermeable surface. Ocean Engineering, 2014, 84, 124-132.	1.9	23
60	Inclusion of additional energy dissipation due to plunging breakers in parametric type wave models. Coastal Engineering, 2013, 82, 1-8.	1.7	3
61	Estimation of current-induced pile groups scour using a rule-based method. Journal of Hydroinformatics, 2013, 15, 516-528.	1.1	26
62	Assessment of wave energy variation in the Persian Gulf. Ocean Engineering, 2013, 70, 72-80.	1.9	80
63	Evaluation of ECMWF wind data for wave hindcast in Chabahar zone. Journal of Coastal Research, 2013, 65, 380-385.	0.1	14
64	Field Measurement for Investigating the Dynamics of Currumbin Creek Tidal Inlet Entrance. Journal of Coastal Research, 2013, 165, 1212-1217.	0.1	6
65	Assessment of CGCM 3.1 wind field in the Persian Gulf. Journal of Coastal Research, 2013, 65, 249-253.	0.1	4
66	Applying Monte Carlo and classification tree sensitivity analysis to the Zayandehrood River. Journal of Hydroinformatics, 2012, 14, 236-250.	1.1	10
67	Derivation of a New Model for Prediction of Wave Overtopping at Rubble Mound Structures. Journal of Waterway, Port, Coastal and Ocean Engineering, 2012, 138, 42-52.	0.5	27
68	Two-Phase Simulation of Wave-Induced Tunnel Scour beneath Marine Pipelines. Journal of Hydraulic Engineering, 2012, 138, 517-529.	0.7	23
69	Predicting Longitudinal Dispersion Coefficient in Natural Streams Using M5′ Model Tree. Journal of Hydraulic Engineering, 2012, 138, 542-554.	0.7	87
70	Wave data assimilation using a hybrid approach in the Persian Gulf. Ocean Dynamics, 2012, 62, 785-797.	0.9	38
71	Stability of rubble-mound breakwater using H50 wave height parameter. Coastal Engineering, 2012, 59, 38-45.	1.7	35
72	Wave energy potential along the northern coasts of the Gulf of Oman, Iran. Renewable Energy, 2012, 40, 90-97.	4.3	82

#	Article	IF	CITATIONS
73	Model tree approach for prediction of pile groups scour due to waves. Ocean Engineering, 2011, 38, 1522-1527.	1.9	68
74	An empirical model for salinity intrusion in alluvial estuaries. Ocean Dynamics, 2011, 61, 1619-1628.	0.9	16
75	Prediction of wave-induced scour depth under submarine pipelines using machine learning approach. Applied Ocean Research, 2011, 33, 54-59.	1.8	54
76	Predicting wave run-up on rubble-mound structures using M5 model tree. Ocean Engineering, 2011, 38, 111-118.	1.9	48
77	Wave height forecasting in Dayyer, the Persian Gulf. Ocean Engineering, 2011, 38, 248-255.	1.9	78
78	Euler–Euler two-phase flow simulation of tunnel erosion beneath marine pipelines. Applied Ocean Research, 2011, 33, 137-146.	1.8	39
79	On the estimation of transport timescales – case study: the Dez reservoir. Journal of Hydroinformatics, 2011, 13, 217-228.	1.1	1
80	Salinity intrusion length: comparison of different approaches. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2011, 164, 33-42.	1.4	10
81	Prediction of pile group scour in waves using support vector machines and ANN. Journal of Hydroinformatics, 2011, 13, 609-620.	1.1	33
82	Evaluation of regular wave scour around a circular pile using data mining approaches. Applied Ocean Research, 2010, 32, 34-39.	1.8	30
83	Numerical investigation of boundary layer effects on vortex shedding frequency and forces acting upon marine pipeline. Applied Ocean Research, 2010, 32, 460-470.	1.8	14
84	Classification of the Caspian Sea coastal waters based on trophic index and numerical analysis. Environmental Monitoring and Assessment, 2010, 164, 349-356.	1.3	14
85	Modeling of Hydrodynamics and Cohesive Sediment Processes in an Estuarine System: Study Case in Danshui River. Environmental Modeling and Assessment, 2010, 15, 261-271.	1.2	16
86	Wave modeling and extreme value analysis off the northern coast of the Persian Gulf. Applied Ocean Research, 2010, 32, 209-218.	1.8	86
87	An alternative approach for investigation of the wave-induced scour around pipelines. Journal of Hydroinformatics, 2010, 12, 51-65.	1.1	31
88	An alternative data driven approach for prediction of thermal discharge initial dilution using tee diffusers. International Journal of Environmental Science and Technology, 2010, 7, 29-36.	1.8	3
89	Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Engineering, 2009, 36, 1175-1181.	1.9	165
90	Design of rubble-mound breakwaters using M5 ′ machine learning method. Applied Ocean Research, 2009, 31, 197-201.	1.8	55

#	Article	IF	CITATIONS
91	A hybrid genetic algorithm–adaptive network-based fuzzy inference system in prediction of wave parameters. Engineering Applications of Artificial Intelligence, 2009, 22, 1194-1202.	4.3	75
92	Hindcasting of wave parameters using different soft computing methods. Applied Ocean Research, 2008, 30, 28-36.	1.8	126
93	Reply to: A Discussion on "Hindcasting of wave parameters using different soft computing methods― [Appl. Ocean Res. (2008), doi:10.1016/j.apor.2008.03.002]. Applied Ocean Research, 2008, 30, 154-155.	1.8	0
94	An alternative approach for the prediction of significant wave heights based on classification and regression trees. Applied Ocean Research, 2008, 30, 172-177.	1.8	112
95	Prediction of salinity intrusion in Danshuei estuarine system. Hydrology Research, 2008, 39, 497-505.	1.1	10
96	Numerical Investigation of Gap to Diameter Ratio Effects on Flow Pattern and Drag Force Around Offshore Pipeline. , 2008, , .		1
97	Modeling of salinity intrusion under different hydrological conditions in the Arvand River Estuary. Canadian Journal of Civil Engineering, 2008, 35, 1476-1480.	0.7	27
98	Application of two numerical models for wave hindcasting in Lake Erie. Applied Ocean Research, 2007, 29, 137-145.	1.8	71
99	Diapycnal Mixing in the Thermocline of Lakes: Estimations by Different Methods. Environmental Fluid Mechanics, 2006, 6, 227-240.	0.7	12
100	A Genetic Algorithm-Based Fuzzy Inference System in Prediction of Wave Parameters. , 2006, , 741-750.		7
101	Application of fuzzy inference system in the prediction of wave parameters. Ocean Engineering, 2005, 32, 1709-1725.	1.9	164
102	Vertical eddy diffusivity estimations in Swan river estuary. Dynamics of Atmospheres and Oceans, 2005, 39, 175-187.	0.7	8
103	Modelling of bubble plume destratification using DYRESM. Journal of Water Supply: Research and Technology - AQUA, 2005, 54, 37-46.	0.6	11
104	Anatomy of turbulence in a narrow and strongly stratified estuary. Journal of Geophysical Research, 2002, 107, 7-1.	3.3	23
105	Anatomy of turbulence in a narrow and weakly stratified estuary. Marine and Freshwater Research, 2002, 53, 757.	0.7	5
106	Anatomy of turbulence in thermally stratified lakes. Limnology and Oceanography, 2001, 46, 1158-1170.	1.6	49