Joseph C Hardin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6457986/publications.pdf

Version: 2024-02-01

687363 610901 30 724 13 24 citations g-index h-index papers 45 45 45 870 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA). Bulletin of the American Meteorological Society, 2022, 103, E619-E641.	3.3	33
2	Using an Explainable Machine Learning Approach to Characterize Earth System Model Errors: Application of SHAP Analysis to Modeling Lightning Flash Occurrence. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	15
3	Deep Convection Initiation, Growth, and Environments in the Complex Terrain of Central Argentina during CACTI. Monthly Weather Review, 2022, 150, 1135-1155.	1.4	6
4	Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package, version 1: assessing E3SM aerosol predictions using aircraft, ship, and surface measurements. Geoscientific Model Development, 2022, 15, 4055-4076.	3.6	3
5	A Global Highâ€Resolution Mesoscale Convective System Database Using Satelliteâ€Derived Cloud Tops, Surface Precipitation, and Tracking. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034202.	3.3	88
6	Physically regularized machine learning emulators of aerosol activation. Geoscientific Model Development, 2021, 14, 3067-3077.	3.6	10
7	Identifying insects, clouds, and precipitation using vertically pointing polarimetric radar Doppler velocity spectra. Atmospheric Measurement Techniques, 2021, 14, 4425-4444.	3.1	3
8	Raindrop Size Spectrum in Deep Convective Regions of the Americas. Atmosphere, 2021, 12, 979.	2.3	5
9	Growth of Mesoscale Convective Systems in Observations and a Seasonal Convection-Permitting Simulation over Argentina. Monthly Weather Review, 2021, 149, 3469-3490.	1.4	9
10	Utilizing a Storm-Generating Hotspot to Study Convective Cloud Transitions: The CACTI Experiment. Bulletin of the American Meteorological Society, 2021, 102, E1597-E1620.	3.3	30
11	Inpainting radar missing data regions with deep learning. Atmospheric Measurement Techniques, 2021, 14, 7729-7747.	3.1	6
12	Updraft and Downdraft Core Size and Intensity as Revealed by Radar Wind Profilers: MCS Observations and Idealized Model Comparisons. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031774.	3.3	34
13	An extended radar relative calibration adjustment (eRCA) technique for higher-frequency radars and range–height indicator (RHI) scans. Atmospheric Measurement Techniques, 2020, 13, 3147-3166.	3.1	3
14	Contrasting Spring and Summer Large-Scale Environments Associated with Mesoscale Convective Systems over the U.S. Great Plains. Journal of Climate, 2019, 32, 6749-6767.	3.2	64
15	The Detection of Mesoscale Convective Systems by the GPM Ku-Band Spaceborne Radar. Journal of the Meteorological Society of Japan, 2019, 97, 1059-1073.	1.8	17
16	Spatiotemporal Characteristics and Large-Scale Environments of Mesoscale Convective Systems East of the Rocky Mountains. Journal of Climate, 2019, 32, 7303-7328.	3.2	91
17	Midlatitude Oceanic Cloud and Precipitation Properties as Sampled by the ARM Eastern North Atlantic Observatory. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4741-4760.	3.3	23
18	The Green Ocean: precipitation insights from the GoAmazon2014/5 experiment. Atmospheric Chemistry and Physics, 2018, 18, 9121-9145.	4.9	21

#	Article	IF	CITATIONS
19	Structure and Evolution of Mesoscale Convective Systems: Sensitivity to Cloud Microphysics in Convectionâ€Permitting Simulations Over the United States. Journal of Advances in Modeling Earth Systems, 2018, 10, 1470-1494.	3.8	145
20	Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra. Atmospheric Measurement Techniques, 2018, 11, 4963-4980.	3.1	19
21	The ARM Cloud Radar Simulator for Global Climate Models: Bridging Field Data and Climate Models. Bulletin of the American Meteorological Society, 2018, 99, 21-26.	3.3	24
22	An Analysis of Coordinated Observations from NOAA's Ronald H. Brown Ship and G-IV Aircraft in a Landfalling Atmospheric River over the North Pacific during CalWater-2015. Monthly Weather Review, 2017, 145, 3647-3669.	1.4	13
23	Calibration of ground radars during the Mid latitude Continental Convective Cloud Experiment (MC3E). , $2013, \ldots$		0
24	A cross frequency performance comparison of dual polarization attenuation correction algorithms at X and S band. , 2012, , .		0
25	Dual-frequency dual-polarized Doppler radar (D3R) system for GPM ground validation: Update and recent field observations. , 2012, , .		5
26	Early investigations into subjective audio quality assessment using brainwave responses. , $2011, \ldots$		0
27	Assessing the Quality of Audio Containing Temporally Varying Distortions. IEEE Transactions on Audio Speech and Language Processing, 2011, 19, 711-720.	3.2	14
28	A Temporally Varying Objective Audio Quality Metric. , 2009, , .		1
29	Audio quality assessment using the mean structural similarity measure. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2008, , .	1.8	35
30	Objective analysis of temporally varying audio quality metrics. , 2008, , .		5