
Gordon S Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6457832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BREATHING: Rhythmicity, Plasticity, Chemosensitivity. Annual Review of Neuroscience, 2003, 26, 239-266.	5.0	759
2	BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nature Neuroscience, 2004, 7, 48-55.	7.1	418
3	Invited Review: Neuroplasticity in respiratory motor control. Journal of Applied Physiology, 2003, 94, 358-374.	1.2	346
4	Invited Review: Intermittent hypoxia and respiratory plasticity. Journal of Applied Physiology, 2001, 90, 2466-2475.	1.2	343
5	Therapeutic potential of intermittent hypoxia: a matter of dose. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1181-R1197.	0.9	312
6	Hypoxia-induced long-term facilitation of respiratory activity is serotonin dependent. Respiration Physiology, 1996, 104, 251-260.	2.8	302
7	Phrenic Long-Term Facilitation Requires Spinal Serotonin Receptor Activation and Protein Synthesis. Journal of Neuroscience, 2002, 22, 6239-6246.	1.7	248
8	Chronic Intermittent Hypoxia Elicits Serotonin-Dependent Plasticity in the Central Neural Control of Breathing. Journal of Neuroscience, 2001, 21, 5381-5388.	1.7	235
9	Long term facilitation of phrenic motor output. Respiration Physiology, 2000, 121, 135-146.	2.8	198
10	Spinal Synaptic Enhancement with Acute Intermittent Hypoxia Improves Respiratory Function after Chronic Cervical Spinal Cord Injury. Journal of Neuroscience, 2005, 25, 2925-2932.	1.7	180
11	Daily intermittent hypoxia enhances walking after chronic spinal cord injury. Neurology, 2014, 82, 104-113.	1.5	163
12	Repetitive Intermittent Hypoxia Induces Respiratory and Somatic Motor Recovery after Chronic Cervical Spinal Injury. Journal of Neuroscience, 2012, 32, 3591-3600.	1.7	162
13	Exposure to Acute Intermittent Hypoxia Augments Somatic Motor Function in Humans With Incomplete Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2012, 26, 163-172.	1.4	159
14	Synaptic Pathways to Phrenic Motoneurons Are Enhanced by Chronic Intermittent Hypoxia after Cervical Spinal Cord Injury. Journal of Neuroscience, 2003, 23, 2993-3000.	1.7	147
15	Is there a link between intermittent hypoxia-induced respiratory plasticity and obstructive sleep apnoea?. Experimental Physiology, 2007, 92, 27-37.	0.9	145
16	Spinal Adenosine A2a Receptor Activation Elicits Long-Lasting Phrenic Motor Facilitation. Journal of Neuroscience, 2008, 28, 2033-2042.	1.7	136
17	Sex steroid hormones and the neural control of breathing. Respiratory Physiology and Neurobiology, 2003, 136, 249-263.	0.7	132
18	Hypoxiaâ€induced phrenic longâ€term facilitation: emergent properties. Annals of the New York Academy of Sciences. 2013, 1279, 143-153.	1.8	117

#	Article	IF	CITATIONS
19	Recovery of phrenic activity and ventilation after cervical spinal hemisection in rats. Journal of Applied Physiology, 2006, 100, 800-806.	1.2	116
20	Cervical Dorsal Rhizotomy Enhances Serotonergic Innervation of Phrenic Motoneurons and Serotonin-Dependent Long-Term Facilitation of Respiratory Motor Output in Rats. Journal of Neuroscience, 1998, 18, 8436-8443.	1.7	114
21	Multiple Pathways to Long-Lasting Phrenic Motor Facilitation. Advances in Experimental Medicine and Biology, 2010, 669, 225-230.	0.8	112
22	Chemoafferent degeneration and carotid body hypoplasia following chronic hyperoxia in newborn rats. Journal of Physiology, 1998, 509, 519-526.	1.3	111
23	Intermittent hypoxia and neurorehabilitation. Journal of Applied Physiology, 2015, 119, 1455-1465.	1.2	110
24	Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2001, 130, 207-218.	0.8	102
25	Severe acute intermittent hypoxia elicits phrenic long-term facilitation by a novel adenosine-dependent mechanism. Journal of Applied Physiology, 2012, 112, 1678-1688.	1.2	99
26	Hippocampal brain-derived neurotrophic factor but not neurotrophin-3 increases more in mice selected for increased voluntary wheel running. Neuroscience, 2003, 121, 1-7.	1.1	98
27	Intermittent Hypoxia and Stem Cell Implants Preserve Breathing Capacity in a Rodent Model of Amyotrophic Lateral Sclerosis. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 535-542.	2.5	89
28	Daily intermittent hypoxia augments spinal BDNF levels, ERK phosphorylation and respiratory long-term facilitation. Experimental Neurology, 2009, 217, 116-123.	2.0	88
29	Spinal plasticity following intermittent hypoxia: implications for spinal injury. Annals of the New York Academy of Sciences, 2010, 1198, 252-259.	1.8	85
30	Cervical Spinal Cord Injury Upregulates Ventral Spinal 5-HT2A Receptors. Journal of Neurotrauma, 2005, 22, 203-213.	1.7	79
31	Activity-Dependent Plasticity of Descending Synaptic Inputs to Spinal Motoneurons in an <i>In Vitro</i> Turtle Brainstem–Spinal Cord Preparation. Journal of Neuroscience, 2000, 20, 3487-3495.	1.7	78
32	Mechanisms of microglial activation in models of inflammation and hypoxia: Implications for chronic intermittent hypoxia. Journal of Physiology, 2016, 594, 1563-1577.	1.3	77
33	Determinants of frequency long-term facilitation following acute intermittent hypoxia in vagotomized rats. Respiratory Physiology and Neurobiology, 2008, 162, 8-17.	0.7	76
34	Long-term effects of the perinatal environment on respiratory control. Journal of Applied Physiology, 2008, 104, 1220-1229.	1.2	74
35	Time-dependent hypoxic ventilatory responses in rats: effects of ketanserin and 5-carboxamidotryptamine. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R658-R666.	0.9	69
36	Intermittent hypoxia induces functional recovery following cervical spinal injury. Respiratory Physiology and Neurobiology, 2009, 169, 210-217.	0.7	66

#	Article	IF	CITATIONS
37	Episodic Stimulation of Â1-Adrenoreceptors Induces Protein Kinase C-Dependent Persistent Changes in Motoneuronal Excitability. Journal of Neuroscience, 2007, 27, 4435-4442.	1.7	64
38	Silent hypoxaemia in COVIDâ€19 patients. Journal of Physiology, 2021, 599, 1057-1065.	1.3	64
39	Intermittent Hypoxia-Induced Spinal Inflammation Impairs Respiratory Motor Plasticity by a Spinal p38 MAP Kinase-Dependent Mechanism. Journal of Neuroscience, 2015, 35, 6871-6880.	1.7	60
40	Repetitive acute intermittent hypoxia increases expression of proteins associated with plasticity in the phrenic motor nucleus. Experimental Neurology, 2012, 237, 103-115.	2.0	59
41	Spinal but not cortical microglia acquire an atypical phenotype with high VEGF, galectin-3 and osteopontin, and blunted inflammatory responses in ALS rats. Neurobiology of Disease, 2014, 69, 43-53.	2.1	59
42	Serotonin reveals ineffective spinal pathways to contralateral phrenic motoneurons in spinally hemisected rats. Experimental Brain Research, 1994, 101, 35-43.	0.7	58
43	Time domains of the hypoxic ventilatory response in awake ducks: episodic and continuous hypoxia. Respiration Physiology, 2001, 124, 117-128.	2.8	57
44	Early postnatal chronic intermittent hypoxia modifies hypoxic respiratory responses and long-term phrenic facilitation in adult rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R1664-R1671.	0.9	55
45	Phrenic Long-Term Facilitation Requires PKCl̂, Activity within Phrenic Motor Neurons. Journal of Neuroscience, 2015, 35, 8107-8117.	1.7	55
46	Lipopolysaccharide attenuates phrenic long-term facilitation following acute intermittent hypoxia. Respiratory Physiology and Neurobiology, 2011, 176, 130-135.	0.7	54
47	Spinal metaplasticity in respiratory motor control. Frontiers in Neural Circuits, 2015, 9, 2.	1.4	54
48	Acute intermittent hypoxia enhances corticospinal synaptic plasticity in humans. ELife, 2018, 7, .	2.8	53
49	Spinal Vascular Endothelial Growth Factor Induces Phrenic Motor Facilitation via Extracellular Signal-Regulated Kinase and Akt Signaling. Journal of Neuroscience, 2011, 31, 7682-7690.	1.7	52
50	Respiratory neuroplasticity – Overview, significance and future directions. Experimental Neurology, 2017, 287, 144-152.	2.0	52
51	Post-hypoxia frequency decline in rats: sensitivity to repeated hypoxia and $\hat{l}\pm2$ -adrenoreceptor antagonism. Brain Research, 1999, 817, 25-33.	1.1	51
52	Okadaic Acid-Sensitive Protein Phosphatases Constrain Phrenic Long-Term Facilitation after Sustained Hypoxia. Journal of Neuroscience, 2008, 28, 2949-2958.	1.7	51
53	Cervical Dorsal Rhizotomy Increases Brain-Derived Neurotrophic Factor and Neurotrophin-3 Expression in the Ventral Spinal Cord. Journal of Neuroscience, 2000, 20, RC77-RC77.	1.7	49
54	Selected Contribution: Intermittent hypoxia induces phrenic long-term facilitation in carotid-denervated rats. Journal of Applied Physiology, 2003, 94, 399-409.	1.2	49

#	Article	IF	CITATIONS
55	Phrenic motor neuron TrkB expression is necessary for acute intermittent hypoxia-induced phrenic long-term facilitation. Experimental Neurology, 2017, 287, 130-136.	2.0	49
56	Prolonged augmentation of respiratory discharge in hypoglossal motoneurons following superior laryngeal nerve stimulation. Brain Research, 1991, 538, 215-225.	1.1	48
57	Cervical Spinal Erythropoietin Induces Phrenic Motor Facilitation via Extracellular Signal-Regulated Protein Kinase and Akt Signaling. Journal of Neuroscience, 2012, 32, 5973-5983.	1.7	48
58	Layers of exercise hyperpnea: Modulation and plasticity. Respiratory Physiology and Neurobiology, 2006, 151, 251-266.	0.7	47
59	Simulated apnoeas induce serotoninâ€dependent respiratory longâ€ŧerm facilitation in rats. Journal of Physiology, 2008, 586, 2171-2181.	1.3	47
60	Spinal 5-HT7 receptors and protein kinase A constrain intermittent hypoxia-induced phrenic long-term facilitation. Neuroscience, 2013, 250, 632-643.	1.1	46
61	Effect of acute intermittent hypoxia on motor function in individuals with chronic spinal cord injury following ibuprofen pretreatment: A pilot study. Journal of Spinal Cord Medicine, 2017, 40, 295-303.	0.7	45
62	Delayed Intervention with Intermittent Hypoxia and Task Training Improves Forelimb Function in a Rat Model of Cervical Spinal Injury. Journal of Neurotrauma, 2015, 32, 1403-1412.	1.7	44
63	Common mechanisms of compensatory respiratory plasticity in spinal neurological disorders. Respiratory Physiology and Neurobiology, 2013, 189, 419-428.	0.7	43
64	Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling. Journal of Neurophysiology, 2015, 114, 2015-2022.	0.9	39
65	Daily acute intermittent hypoxia improves breathing function with acute and chronic spinal injury via distinct mechanisms. Respiratory Physiology and Neurobiology, 2018, 256, 50-57.	0.7	39
66	Cervical spinal 5-HT _{2A} and 5-HT _{2B} receptors are both necessary for moderate acute intermittent hypoxia-induced phrenic long-term facilitation. Journal of Applied Physiology, 2019, 127, 432-443.	1.2	39
67	Therapeutic acute intermittent hypoxia: A translational roadmap for spinal cord injury and neuromuscular disease. Experimental Neurology, 2022, 347, 113891.	2.0	39
68	Modulation of ventilatory control during exercise. Respiration Physiology, 1997, 110, 277-285.	2.8	38
69	Chronic cervical spinal sensory denervation reveals ineffective spinal pathways to phrenic motoneurons in the rat. Neuroscience Letters, 2002, 323, 25-28.	1.0	37
70	Phrenic responses to isocapnic hypoxia in adult rats following perinatal hyperoxia. Respiration Physiology, 1997, 109, 107-116.	2.8	36
71	Sustained Hypoxia Elicits Competing Spinal Mechanisms of Phrenic Motor Facilitation. Journal of Neuroscience, 2016, 36, 7877-7885.	1.7	36
72	Reduced respiratory neural activity elicits phrenic motor facilitation. Respiratory Physiology and Neurobiology, 2011, 175, 303-309.	0.7	34

#	Article	IF	CITATIONS
73	Acute intermittent hypoxia induced phrenic long-term facilitation despite increased SOD1 expression in a rat model of ALS. Experimental Neurology, 2015, 273, 138-150.	2.0	34
74	Crossing the blood–brain barrier with carbon dots: uptake mechanism and <i>in vivo</i> cargo delivery. Nanoscale Advances, 2021, 3, 3942-3953.	2.2	34
75	Prednisolone Pretreatment Enhances Intermittent Hypoxia-Induced Plasticity in Persons With Chronic Incomplete Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2019, 33, 911-921.	1.4	31
76	Adenosine-dependent phrenic motor facilitation is inflammation resistant. Journal of Neurophysiology, 2017, 117, 836-845.	0.9	30
77	Serotonin elicits long-lasting enhancement of rhythmic respiratory activity in turtle brain stems in vitro. Journal of Applied Physiology, 2001, 91, 2703-2712.	1.2	28
78	Divergent cAMP signaling differentially regulates serotonin-induced spinal motor plasticity. Neuropharmacology, 2017, 113, 82-88.	2.0	28
79	Short-term modulation of the exercise ventilatory response in young men. Journal of Applied Physiology, 2008, 104, 244-252.	1.2	27
80	Recruitment and plasticity in diaphragm, intercostal, and abdominal muscles in unanesthetized rats. Journal of Applied Physiology, 2014, 117, 180-188.	1.2	27
81	Adenosine 2A Receptor Inhibition Enhances Intermittent Hypoxia-Induced Diaphragm but Not Intercostal Long-Term Facilitation. Journal of Neurotrauma, 2014, 31, 1975-1984.	1.7	27
82	Acute intermittent hypoxia boosts spinal plasticity in humans with tetraplegia. Experimental Neurology, 2021, 335, 113483.	2.0	27
83	Differences in time-dependent hypoxic phrenic responses among inbred rat strains. Journal of Applied Physiology, 2005, 98, 838-844.	1.2	25
84	Adrenergic α ₁ receptor activation is sufficient, but not necessary for phrenic long-term facilitation. Journal of Applied Physiology, 2014, 116, 1345-1352.	1.2	25
85	Respiratory function after selective respiratory motor neuron death from intrapleural CTB–saporin injections. Experimental Neurology, 2015, 267, 18-29.	2.0	25
86	Phrenic motor neuron adenosine 2A receptors elicit phrenic motor facilitation. Journal of Physiology, 2018, 596, 1501-1512.	1.3	25
87	Single-session effects of acute intermittent hypoxia on breathing function after human spinal cord injury. Experimental Neurology, 2021, 342, 113735.	2.0	24
88	Cross-talk inhibition between 5-HT _{2B} and 5-HT ₇ receptors in phrenic motor facilitation via NADPH oxidase and PKA. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R709-R715.	0.9	22
89	Systemic inflammation inhibits serotonin receptor 2-induced phrenic motor facilitation upstream from BDNF/TrkB signaling. Journal of Neurophysiology, 2018, 119, 2176-2185.	0.9	22
90	Synergy between Acute Intermittent Hypoxia and Task-Specific Training. Exercise and Sport Sciences Reviews, 2020, 48, 125-132.	1.6	22

#	Article	IF	CITATIONS
91	Respiratory Long-Term Facilitation: Too Much or Too Little of a Good Thing?. Advances in Experimental Medicine and Biology, 2008, 605, 224-227.	0.8	21
92	Mechanisms of Enhanced Phrenic Long-Term Facilitation in <i>SOD1^{G93A}</i> Rats. Journal of Neuroscience, 2017, 37, 5834-5845.	1.7	21
93	Mammalian target of rapamycin is required for phrenic long-term facilitation following severe but not moderate acute intermittent hypoxia. Journal of Neurophysiology, 2015, 114, 1784-1791.	0.9	20
94	Pharmacological modulation of hypoxia-induced respiratory neuroplasticity. Respiratory Physiology and Neurobiology, 2018, 256, 4-14.	0.7	20
95	Compensatory plasticity in diaphragm and intercostal muscle utilization in a rat model of ALS. Experimental Neurology, 2018, 299, 148-156.	2.0	19
96	Catecholaminergic modulation of respiratory rhythm in an in vitro turtle brain stem preparation. Journal of Applied Physiology, 1998, 85, 105-114.	1.2	18
97	Protein kinase Cl̂´ constrains the Sâ€pathway to phrenic motor facilitation elicited by spinal 5â€HT 7 receptors or severe acute intermittent hypoxia. Journal of Physiology, 2019, 597, 481-498.	1.3	18
98	Systemic inflammation suppresses spinal respiratory motor plasticity via mechanisms that require serine/threonine protein phosphatase activity. Journal of Neuroinflammation, 2021, 18, 28.	3.1	18
99	Activity-dependent plasticity in descending synaptic inputs to respiratory spinal motoneurons. Respiratory Physiology and Neurobiology, 2002, 131, 79-90.	0.7	17
100	Glial activation in the spinal ventral horn caudal to cervical injury. Respiratory Physiology and Neurobiology, 2012, 180, 61-68.	0.7	17
101	Carotid chemoafferent activity is not necessary for all phrenic long-term facilitation following acute intermittent hypoxia. Respiratory Physiology and Neurobiology, 2011, 176, 73-79.	0.7	16
102	Spinal vascular endothelial growth factor (VEGF) and erythropoietin (EPO) induced phrenic motor facilitation after repetitive acute intermittent hypoxia. Respiratory Physiology and Neurobiology, 2013, 185, 481-488.	0.7	16
103	Increased spinal monoamine concentrations after chronic thoracic dorsal rhizotomy in goats. Journal of Applied Physiology, 2000, 89, 1266-1274.	1.2	15
104	Mild to Moderate Sleep Apnea Is Linked to Hypoxia-induced Motor Recovery after Spinal Cord Injury. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 887-890.	2.5	15
105	Circadian clock genes and respiratory neuroplasticity genes oscillate in the phrenic motor system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R1058-R1067.	0.9	15
106	Short- and Long-Term Modulation of the Exercise Ventilatory Response. Medicine and Science in Sports and Exercise, 2010, 42, 1681-1687.	0.2	14
107	Neither serotonin nor adenosine-dependent mechanisms preserve ventilatory capacity in ALS rats. Respiratory Physiology and Neurobiology, 2014, 197, 19-28.	0.7	14
108	Spinal nNOS regulates phrenic motor facilitation by a 5-HT2B receptor- and NADPH oxidase-dependent mechanism. Neuroscience, 2014, 269, 67-78.	1.1	14

#	Article	IF	CITATIONS
109	Cervical spinal contusion alters Na+-K+-2Cl- and K+-Cl- cation-chloride cotransporter expression in phrenic motor neurons. Respiratory Physiology and Neurobiology, 2019, 261, 15-23.	0.7	14
110	Circulatory control of phrenic motor plasticity. Respiratory Physiology and Neurobiology, 2019, 265, 19-23.	0.7	14
111	Protocol-Specific Effects of Intermittent Hypoxia Pre-Conditioning on Phrenic Motor Plasticity in Rats with Chronic Cervical Spinal Cord Injury. Journal of Neurotrauma, 2021, 38, 1292-1305.	1.7	14
112	Spinal serotonin receptor activation modulates the exercise ventilatory response with increased dead space in goats. Respiratory Physiology and Neurobiology, 2008, 161, 230-238.	0.7	13
113	Should we standardize protocols and preparations used to study respiratory plasticity?. Respiratory Physiology and Neurobiology, 2011, 177, 93-97.	0.7	13
114	Quantitative assessment of integrated phrenic nerve activity. Respiratory Physiology and Neurobiology, 2016, 226, 81-86.	0.7	13
115	Spinal BDNF-induced phrenic motor facilitation requires PKCÎ, activity. Journal of Neurophysiology, 2017, 118, 2755-2762.	0.9	13
116	Reliability of diaphragmatic motor-evoked potentials induced by transcranial magnetic stimulation. Journal of Applied Physiology, 2020, 129, 1393-1404.	1.2	13
117	Mechanisms of severe acute intermittent hypoxia-induced phrenic long-term facilitation. Journal of Neurophysiology, 2021, 125, 1146-1156.	0.9	13
118	Cervical spinal injury compromises caudal spinal tissue oxygenation and undermines acute intermittent hypoxia-induced phrenic long-term facilitation. Experimental Neurology, 2021, 342, 113726.	2.0	13
119	Acute intermittent hypoxia and respiratory muscle recruitment in people with amyotrophic lateral sclerosis: A preliminary study. Experimental Neurology, 2022, 347, 113890.	2.0	13
120	Exercise training effects on hypoxic and hypercapnic ventilatory responses in mice selected for increased voluntary wheel running. Experimental Physiology, 2014, 99, 403-413.	0.9	12
121	Serotonergic innervation of respiratory motor nuclei after cervical spinal injury: Impact of intermittent hypoxia. Experimental Neurology, 2021, 338, 113609.	2.0	12
122	Prolonged acute intermittent hypoxia improves forelimb reach-to-grasp function in a rat model of chronic cervical spinal cord injury. Experimental Neurology, 2021, 340, 113672.	2.0	12
123	Atypical protein kinase C expression in phrenic motor neurons of the rat. Neuroscience, 2010, 169, 787-793.	1.1	11
124	Intermittent but not sustained moderate hypoxia elicits long-term facilitation of hypoglossal motor output. Respiratory Physiology and Neurobiology, 2018, 256, 15-20.	0.7	11
125	Hypoxia-induced hypotension elicits adenosine-dependent phrenic long-term facilitation after carotid denervation. Experimental Neurology, 2020, 333, 113429.	2.0	11
126	Short-term modulation of the exercise ventilatory response in older men. Respiratory Physiology and Neurobiology, 2010, 173, 37-46.	0.7	10

#	Article	IF	CITATIONS
127	Adenosine 2A receptor inhibition protects phrenic motor neurons from cell death induced by protein synthesis inhibition. Experimental Neurology, 2020, 323, 113067.	2.0	10
128	Baseline Arterial CO2 Pressure Regulates Acute Intermittent Hypoxia-Induced Phrenic Long-Term Facilitation in Rats. Frontiers in Physiology, 2021, 12, 573385.	1.3	10
129	p-Chlorophenylalanine eliminates long-term modulation of the exercise ventilatory response in goats. Respiration Physiology, 2001, 128, 161-169.	2.8	9
130	Short-term modulation of the exercise ventilatory response in younger and older women. Respiratory Physiology and Neurobiology, 2011, 179, 235-247.	0.7	9
131	Cervical spinal demyelination with ethidium bromide impairs respiratory (phrenic) activity and forelimb motor behavior in rats. Neuroscience, 2013, 229, 77-87.	1.1	9
132	Mechanisms of compensatory plasticity for respiratory motor neuron death. Respiratory Physiology and Neurobiology, 2019, 265, 32-39.	0.7	9
133	Cancer cachexia impairs neural respiratory drive in hypoxia but not hypercapnia. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 63-72.	2.9	9
134	Spinal AMP kinase activity differentially regulates phrenic motor plasticity. Journal of Applied Physiology, 2020, 128, 523-533.	1.2	9
135	Acute intermittent hypercapnicâ€hypoxia elicits central neural respiratory motor plasticity in humans. Journal of Physiology, 2022, , .	1.3	9
136	Breathing mechanics during exercise with added dead space reflect mechanisms of ventilatory control. Respiratory Physiology and Neurobiology, 2009, 168, 210-217.	0.7	8
137	Effect of acute intermittent hypoxia on cortico-diaphragmatic conduction in healthy humans. Experimental Neurology, 2021, 339, 113651.	2.0	8
138	Short-term modulation of the ventilatory response to exercise is preserved in obstructive sleep apnea. Respiratory Physiology and Neurobiology, 2017, 236, 42-50.	0.7	7
139	Short-term modulation of the exercise ventilatory response in goats: effects of 8-OH-DPAT and MPPI. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R1880-R1888.	0.9	6
140	Cyclooxygenase enzyme activity does not impair respiratory motor plasticity after one night of intermittent hypoxia. Respiratory Physiology and Neurobiology, 2018, 256, 21-28.	0.7	6
141	Phrenic motor neuron survival below cervical spinal cord hemisection. Experimental Neurology, 2021, 346, 113832.	2.0	6
142	Respiratory plasticity following intermittent hypoxia: a guide for novel therapeutic approaches to ventilatory control disorders?. , 2008, , 291-311.		6
143	Does simulated apnea elicit respiratory long term facilitation?. FASEB Journal, 2006, 20, A372.	0.2	6
144	Spinal protein phosphatase 1 constrains respiratory plasticity after sustained hypoxia. Journal of Applied Physiology, 2018, 125, 1440-1446.	1.2	5

#	Article	IF	CITATIONS
145	Daily acute intermittent hypoxia improves respiratory function in rats with chronic cervical spinal hemisection. FASEB Journal, 2007, 21, A1292.	0.2	5
146	Thrice weekly intermittent hypoxia increases expression of key proteins necessary for phrenic longâ€ŧerm facilitation: a possible mechanism of respiratory metaplasticity?. FASEB Journal, 2007, 21, A1292.	0.2	5
147	Enhanced Phrenic Longâ€Term Facilitation Following Repetitive Acute Intermittent Hypoxia: Role of Glycolytic Flux. FASEB Journal, 2010, 24, 799.15.	0.2	5
148	Daily acute intermittent hypoxia enhances phrenic motor output and stimulus-evoked phrenic responses in rats. Journal of Neurophysiology, 2021, 126, 777-790.	0.9	4
149	Acute morphine blocks spinal respiratory motor plasticity via longâ€latency mechanisms that require tollâ€like receptor 4 signalling. Journal of Physiology, 2021, 599, 3771-3797.	1.3	3
150	Respiratory long term facilitation evoked by acute intermittent hypoxia is impaired following intravenous injection of a superoxide dismutase mimetic. FASEB Journal, 2006, 20, A372.	0.2	3
151	Spinal activation of protein kinase C elicits phrenic motor facilitation. Respiratory Physiology and Neurobiology, 2018, 256, 36-42.	0.7	2
152	Daily acute intermittent hypoxia enhances serotonergic innervation of hypoglossal motor nuclei in rats with and without cervical spinal injury. Experimental Neurology, 2022, 347, 113903.	2.0	2
153	Okadaic Acidâ€Sensitive Protein Phosphatases Constrain Phrenic Longâ€Term Facilitation Following Sustained Hypoxia. FASEB Journal, 2006, 20, A372.	0.2	2
154	Facilitation of phrenic motor output following sustained hypocapnia in rats. FASEB Journal, 2007, 21, A1292.	0.2	2
155	Erythropoietin (EPO)â€induced phrenic motor facilitation (PMF) requires ERK activation. FASEB Journal, 2010, 24, 799.8.	0.2	2
156	Daily Isoflurane Exposure Increases Barbiturate Insensitivity in Medullary Respiratory and Cortical Neurons via Expression of ε-Subunit Containing GABA ARs. PLoS ONE, 2015, 10, e0119351.	1.1	1
157	Editorial: Neuromodulatory Control of Brainstem Function in Health and Disease. Frontiers in Neuroscience, 2020, 14, 86.	1.4	1
158	Therapeutic Potential of Intermittent Hypoxia: Lessons from Respiratory Motor Plasticity. , 2014, , 31-42.		1
159	Severe acute intermittent hypoxia elicits longâ€lasting phrenic motor facilitation by a novel adenosinergic mechanism. FASEB Journal, 2011, 25, 1111.10.	0.2	1
160	Phrenic Motor Neuron Survival Caudal to C2 Hemisection. FASEB Journal, 2017, 31, 873.13.	0.2	1
161	Reply to Dr. Poon. Journal of Applied Physiology, 2008, 105, 391-391.	1.2	0
162	Ten hypoxic episodes induce similar ventilatory longâ€ŧerm facilitation in Lewis and Brown Norway rats. FASEB Journal, 2006, 20, A372.	0.2	0

#	Article	IF	CITATIONS
163	Episode Frequency Determines the Impact of Chronic Intermittent Hypoxia on Phrenic Long Term Facilitation. FASEB Journal, 2017, 31, 1055.10.	0.2	0
164	Longâ€ŧerm Delivery of "Low Dose―Repetitive Intermittent Hypoxia is Not Associated with Detectable Pathology. FASEB Journal, 2018, 32, .	0.2	0
165	Phrenic Motor Neuron Survival Below a Cervical Spinal Cord Injury. FASEB Journal, 2018, 32, 743.12.	0.2	Ο
166	Chronic Intermittent Hypoxia and Respiratory Motor Plasticity after Cervical Spinal Cord Contusion. FASEB Journal, 2019, 33, 731.4.	0.2	0
167	Neurochemical Plasticity of Phrenic Motor Neuron Adenosine 2A Receptors: Effects of Cervical Spinal Injury and Intermittent Hypoxia. FASEB Journal, 2019, 33, 844.9.	0.2	Ο
168	Neurochemical Plasticity of Serotonin Receptors on Phrenic Motor Neurons: Effects of Cervical Spinal Injury and Intermittent Hypoxia. FASEB Journal, 2019, 33, 844.8.	0.2	0
169	Impact of Intermittent Hypoxia Protocol on Phosphoâ€p38 and Phosphoâ€ERK MAP Kinase Expression within Phrenic Motoneurons. FASEB Journal, 2019, 33, 844.1.	0.2	Ο
170	Circadian Clock Gene Expression in Regions of Interest to Respiratory Control. FASEB Journal, 2019, 33, 844.5.	0.2	0
171	DARPPâ€32 and Cdk5 Expression in the Ventral Cervical Spinal Cord of Rats. FASEB Journal, 2019, 33, .	0.2	Ο
172	Daily acute, but not chronic, intermittent hypoxia enhances phrenic motor plasticity in chronic cervical spinal cord injury. FASEB Journal, 2019, 33, 731.6.	0.2	0
173	Impact of Dietary Folate on Respiratory Recovery after Cervical SCI. FASEB Journal, 2019, 33, 731.5.	0.2	Ο
174	Adenosine 2A Receptor Antagonism in Acute Cervical Contusion/Compression Injury Preserves Serotoninâ€Đependent Phrenic Motor Plasticity. FASEB Journal, 2019, 33, .	0.2	0
175	Adenosine A 1 Receptor Expression on Phrenic Motor Neurons after Cervical Spinal Injury and Different Intermittent Hypoxia Exposures. FASEB Journal, 2019, 33, 844.10.	0.2	0
176	Phrenic Motor Neuron Fractalkine Expression After Intermittent Hypoxia and Spinal Cord Injury. FASEB Journal, 2022, 36, .	0.2	0