Bin Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6457762/publications.pdf

Version: 2024-02-01

279798 330143 1,544 68 23 37 citations h-index g-index papers 69 69 69 1654 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage. Journal of Materials Chemistry A, 2020, 8, 884-917.	10.3	151
2	Janus phenol–formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. Advanced Composites and Hybrid Materials, 2022, 5, 1180-1195.	21.1	100
3	Magnetically recoverable core–shell nanocomposites γ-Fe2O3@SiO2@TiO2–Ag with enhanced photocatalytic activity and antibacterial activity. Separation and Purification Technology, 2013, 103, 251-257.	7.9	83
4	Lithium extraction from low-grade salt lake brine with ultrahigh Mg/Li ratio using TBP – kerosene – FeCl3 system. Separation and Purification Technology, 2019, 211, 303-309.	7.9	80
5	A multifunctional β-CD-modified Fe3O4@ZnO:Er3+,Yb3+ nanocarrier for antitumor drug delivery and microwave-triggered drug release. Materials Science and Engineering C, 2015, 46, 253-263.	7.3	78
6	Novel Fe ₃ O ₄ @ZnO@mSiO ₂ Nanocarrier for Targeted Drug Delivery and Controllable Release with Microwave Irradiation. Journal of Physical Chemistry C, 2014, 118, 14929-14937.	3.1	74
7	Novel Method To Investigate the Interaction Force between Etoposide and APTES-Functionalized Fe ₃ 0 ₄ @nSiO ₂ @mSiO ₂ Nanocarrier for Drug Loading and Release Processes. Journal of Physical Chemistry C, 2015, 119, 4379-4386.	3.1	50
8	A microwave-triggered controllable drug delivery system based on hollow-mesoporous cobalt ferrite magnetic nanoparticles. Journal of Alloys and Compounds, 2017, 699, 526-533.	5 . 5	50
9	Preparation and characterization of Co-doped BaTiO3 nanosized powders and ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 133, 205-208.	3.5	48
10	A novel double-coating approach to prepare fine-grained BaTiO3@La2O3@SiO2 dielectric ceramics for energy storage application. Journal of Alloys and Compounds, 2017, 690, 438-445.	5 . 5	48
11	Preparation and characterization of BaTiO3 powders and ceramics by sol–gel process using oleic acid as surfactant. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 473, 34-41.	5.6	46
12	Removal of calcium and magnesium from lithium concentrated solution by solvent extraction method using D2EHPA. Desalination, 2020, 479, 114306.	8.2	45
13	Enhanced energy storage properties in lead-free BaTiO ₃ @Na _{0.5} K _{0.5} NbO ₃ nano-ceramics with nanodomains <i>via</i> a core–shell structural design. Journal of Materials Chemistry C, 2020, 8, 5248-5258.	5 . 5	39
14	Synthesis, characterization, and dielectric properties of Ba(Ti1â^'xSnx)O3 nanopowders and ceramics. Materials Research Bulletin, 2009, 44, 1930-1934.	5.2	32
15	A simple approach for the synthesis of bifunctional Fe3O4@Gd2O3:Eu3+ core–shell nanocomposites. Journal of Alloys and Compounds, 2012, 531, 30-33.	5. 5	32
16	Fabrication of submicron La 2 O 3 -coated BaTiO 3 particles and fine-grained ceramics with temperature-stable dielectric properties. Scripta Materialia, 2014, 90-91, 49-52.	5. 2	32
17	Preparation and characterization of niobium-doped barium titanate nanocrystalline powders and ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 454-455, 667-672.	5.6	29
18	Preparation and characterization of BaTiO3 powders and ceramics by the sol–gel process using organic monoacid as surfactant. Scripta Materialia, 2007, 57, 623-626.	5 . 2	28

#	Article	IF	CITATIONS
19	Preparation and characterization of BaTiO3 powders and ceramics by sol–gel process using decanedioic acid. Journal of Alloys and Compounds, 2008, 459, 589-593.	5.5	28
20	Preparation of flower-dewdrops Fe3O4/carbon-SiO2 microsphere for microwave-triggered drug delivery. Journal of Alloys and Compounds, 2019, 775, 826-835.	5 . 5	27
21	Preparation and characterization of Ag-doped BaTiO3 based X7R ceramics. Materials Research Bulletin, 2009, 44, 893-897.	5. 2	26
22	Preparation and characterization of monodisperse Ag nanoparticles doped barium titanate ceramics. Journal of Alloys and Compounds, 2009, 478, 620-623.	5 . 5	26
23	Core–Shell Structure and Dielectric Properties of Ba _{0.991} Bi _{0.006} TiO ₃ @Nb ₂ O ₅ –Co ₃ Ceramics. Journal of the American Ceramic Society, 2016, 99, 1664-1670.	subs 20 < sul	b> 26 (sub>
24	Enhanced energy storage of lead-free mixed oxide core double-shell barium strontium zirconate titanate@magnesium aluminate@zinc oxide-boron trioxide-silica ceramic nanocomposites. Advanced Composites and Hybrid Materials, 2022, 5, 1477-1489.	21.1	24
25	A novel microwave stimulus remote controlled anticancer drug release system based on Fe ₃ O ₄ @ZnO@mGd ₂ O ₃ :Eu@P(NIPAm-co-MAA) multifunctional nanocarriers. Journal of Materials Chemistry B, 2015, 3, 6919-6927.	5.8	23
26	Multifunctional Fe3O4@WO3@mSiO2–APTES nanocarrier for targeted drug delivery and controllable release with microwave irradiation triggered by WO3. Materials Letters, 2016, 169, 185-188.	2.6	23
27	Interface and defect modulation via a core–shell design in (Na0.5Bi0.5TiO3@La2O3)-(SrSn0.2Ti0.8O3@La2O3)-Bi2O3-B2O3-SiO2 composite ceramics for wide-temperature energy storage capacitors. Chemical Engineering Journal, 2022, 435, 135061.	12.7	22
28	ZnO capped flower-like porous carbon-Fe3O4 composite as carrier for bi-triggered drug delivery. Materials Science and Engineering C, 2020, 107, 110256.	7.3	19
29	Designing high energy storage performance BSZT-KNN ceramics. Ceramics International, 2021, 47, 20617-20625.	4.8	18
30	Synthesis and characterization of mesoporous and hollow-mesoporous MxFe3-xO4 (M=Mg, Mn, Fe, Co,) Tj ETQq Research, 2017, 19, 1.	0 0 0 rgBT 1.9	Overlock 10
31	A novel precipitation-based synthesis for the formation of X8R-type dielectrics composition based on monodispersed submicron Ba0.991Bi0.006TiO3@Nb2O5 particles. Journal of the European Ceramic Society, 2015, 35, 2461-2469.	5.7	13
32	The effect of a barium titanate xerogel precursor on the grain size and densification of fine-grained BaTiO3 ceramics. Ceramics International, 2019, 45, 10626-10632.	4.8	12
33	Phase composition, microstructure, and dielectric properties of dysprosium-doped Ba(Zr0.1Ti0.9)O3-based Y5V ceramics with high permittivity. Ceramics International, 2014, 40, 11681-11688.	4.8	11
34	Production of Ba 0.991 Bi 0.006 TiO 3 @ZnO–B 2 O 3 –SiO 2 ceramics with a high dielectric constant, a core–shell structure, and a fine-grained microstructure by means of a sol-precipitation method. Ceramics International, 2016, 42, 7397-7405.	4.8	11
35	Scalable Synthesis Nano-Perovskite K(Mn0.95Ni0.05)F3 Cathode by Homogeneous Precipitation Method for Potassium-lon Batteries. Nanoscale Research Letters, 2019, 14, 238.	5.7	11
36	The energy storage properties of fine-grained Ba0.8Sr0.2Zr0.1Ti0.9O3 ceramics enhanced by MgO and ZnO-B2O3-SiO2 coatings. Materials Research Bulletin, 2019, 111, 311-319.	5.2	11

#	Article	IF	CITATIONS
37	The combined first principles and experimental study of O-doped KMnF3 as a cathode for potassium-ion batteries. Applied Surface Science, 2020, 514, 145954.	6.1	11
38	Novel X8R-type BaTiO3-based ceramics with a high dielectric constant created by doping nanocomposites with Li–Ti–Si–O. Journal of Materials Science: Materials in Electronics, 2013, 24, 3850-3855.	2.2	10
39	Low temperature sintering of high permittivity BaTiO3 based X8R ceramics doped with Li2O–Bi2O3–B2O3 frit. Materials Letters, 2013, 113, 167-169.	2.6	10
40	Synthesis and characterization of Zn–B–Si–O nano-composites and their doped BaTiO3 ceramics. Materials Research Bulletin, 2010, 45, 1460-1465.	5.2	9
41	A novel process to synthesize high-k â€~Y5V' nanopowder and ceramics. Ceramics International, 2012, 38, 389-394.	4.8	9
42	Development of a Fe ₃ O ₄ @SnO ₂ :Er ³⁺ ,Yb ³⁺ â€"APTES nanocarrier for microwave-triggered controllable drug release, and the study of the loading and release mechanisms using microcalorimetry. New Journal of Chemistry, 2016, 40, 1460-1470.	2.8	9
43	Glycine-functionalized Fe ₃ O ₄ @TiO ₂ :Er ³⁺ ,Yb ³⁺ nanocarrier for microwave-triggered controllable drug release and study on mechanism of loading/release process using microcalorimetry. Expert Opinion on Drug Delivery. 2015. 12. 1397-1409.	5.0	8
44	A Binary Particle Self-Assembly Sintering Method to Realize Controllable Synthesis of Fine-Grained Barium Titanate Ceramics. Journal of Electronic Materials, 2021, 50, 325-335.	2.2	8
45	A novel microwave stimulus remote-controlled anticancer drug release system based on Janus TiO2-&mSiO2 nanocarriers. Materials Science and Engineering C, 2021, 123, 111968.	7.3	8
46	Nd-doped barium titanate ceramics with various Ti/Ba ratios prepared by sol-gel method. Science in China Series B: Chemistry, 2005, 48, 60-64.	0.8	7
47	Controllable preparation of Na0.4K0.1Bi0.5TiO3–CaZrO3–NaNbO3 nanoceramics with excellent temperature-stable energy storage performance by combining sol-gel synthesis and two-step sintering. Ceramics International, 2022, 48, 31138-31147.	4.8	7
48	Preparation and characterization of BaTiO3 powders and ceramics by sol–gel process using hexanoic and hexanedioic acid as surfactant. Microelectronic Engineering, 2009, 86, 352-356.	2.4	6
49	Enhancement of dielectric properties by addition of Li–Ti–Si–O nanocomposite to X7R ceramics. Journal of Alloys and Compounds, 2013, 550, 216-220.	5.5	6
50	Excellent dielectric properties and enhanced temperature stability of CaZrO3-modified BaTiO3 ceramic capacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 13088-13094.	2.2	6
51	Multifunctional î³-Fe2O3@Ca3(PO4)2@YPO4:Tb3+,Ce3+ nanocomposites as a potential drug carrier. Materials Chemistry and Physics, 2014, 146, 330-336.	4.0	5
52	Synthesis of fine-grain Ba0.96La0.04TiO3 dielectric ceramics by different routes for multilayer ceramic capacitors. Ceramics International, 2017, 43, 15115-15121.	4.8	4
53	Preparation of multifunctional Fe ₃ O ₄ @ZnAl ₂ O ₄ :Eu ³⁺ @mSiO ₂ â€ drug-carrier for microwave controlled release of anticancer drugs. RSC Advances, 2017, 7, 55489-55495.	"APTES 3.6	4
54	A new strategy to realize phase structure and morphology of BaTiO3 nanowires controlled in ZnO-B2O3-SiO2 glass. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114785.	3.5	4

#	ARTICLE	IF	Citations
55	Fabrication of submicron BaTiO3@YFeO3 particles and fine-grained composite magnetodielectric ceramics with a core–shell structure by means of a co-precipitation method. Journal of Materials Science: Materials in Electronics, 2017, 28, 10986-10991.	2.2	3
56	Preparation of a microwave-responsive hollow-mesoporous Fe ₃ O ₄ /nGO composite for on-demand controllable drug release. New Journal of Chemistry, 2018, 42, 13406-13413.	2.8	3
57	A Strategy for Microwave-Controlled Release of Anticancer Drugs: (Fe3O4/nGO)@mSiO2/GQDs Nanocomposite Carrier Jointly Enhanced by nGO and GQDs. Nano, 2020, 15, 2050071.	1.0	3
58	Boosting energy storage performance in Ba0.8Sr0.2Zr0.1Ti0.9O3–Na0.5Bi0.5TiO3 lead-free nanoceramics through polar nanoregions and grain refinement engineering. Journal of Materials Science: Materials in Electronics, 2021, 32, 7259-7270.	2.2	3
59	Low-Temperature Sintering and Enhanced Dielectric Properties of BaZr0.2Ti0.8O3-Based Y5V Ceramics with Li2CO3 to Reduce the Sintering Temperature. Journal of Electronic Materials, 2019, 48, 7081-7088.	2.2	2
60	From core–shell particles to dense Ba0.8Sr0.2Zr0.1Ti0.9O3@Bi2O3–Fe2O3–SiO2 ceramics with low sintering temperature and improved dielectric, energy storage properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 4006-4016.	2.2	2
61	A Facile Solvothermal Synthesis of Monodisperse Ni Nanoparticles. Chemical Research in Chinese Universities, 2008, 24, 260-262.	2.6	1
62	Fabrication of X8R-type Ba0.991Bi0.006TiO3@Nb2O5–Co3O4–La2O3@ZnO–B2O3–SiO2 ceramics with fine-grained microstructure and low sintering temperature. Journal of Materials Science: Materials in Electronics, 2018, 29, 6369-6376.	1 a 2.2	1
63	Densification and fine-grain formation mechanisms of BaTiO3 ceramics consolidated by self-assembly sintering. Journal of Materials Science: Materials in Electronics, 2021, 32, 8043-8053.	2.2	1
64	PREPARATION OF PEROVSKITE 0.75Pb(Ni _{1/3} Nb _{2/3})O ₃ -0.25PbTiO ₃ CERAMICS USING SEMICHEMICAL METHODS AND RELATED REACTION MECHANISMS. Chemical Engineering Communications, 2007, 195, 11-17.	2.6	O
65	Synthesis and Characterization of Li-Ti-O Nano-Composites and Their Doped BaTiO ₃ Based X7R-Type Ceramics. Advanced Materials Research, 0, 148-149, 1575-1579.	0.3	0
66	High permittivity of Ba (Ti _{1-x} Zr _x) O ₃ -t Y 5 V -type nanopowders and ceramics synthesized using a one-step sol–gel method. Journal of Advanced Dielectrics, 2013, 03, 1350018.	pased 2.4	O
67	Barium titanate-based X8R ceramics with high dielectric constant by adding Zn-B-Si-O nanocomposites. International Journal of Nanomanufacturing, 2014, 10, 152.	0.3	0
68	A new strategy to achieve the controllable preparation of nanoceramics with BaTiO3@resin core–shell nanoparticles. SN Applied Sciences, 2020, 2, 1.	2.9	0